The precise temporal coordination of activity in the brain is thought to be fundamental for memory function. Inhibitory neurons in the medial septum provide a prominent source of innervation to the hippocampus and play a major role in controlling hippocampal theta (~8 Hz) oscillations. While pharmacological inhibition of medial septal neurons is known to disrupt memory, the exact role of septal inhibitory neurons in regulating hippocampal representations and memory is not fully understood. Here, we dissociate the role of theta rhythms in spatiotemporal coding and memory using an all-optical interrogation and recording approach. We find that optogenetic frequency scrambling stimulations abolish theta oscillations and modulate a portion of neurons in the hippocampus. Such stimulation decreased episodic and working memory retrieval while leaving hippocampal spatiotemporal codes intact. Our study suggests that theta rhythms play an essential role in memory but may not be necessary for hippocampal spatiotemporal codes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877037PMC
http://dx.doi.org/10.1038/s41467-023-35825-5DOI Listing

Publication Analysis

Top Keywords

hippocampal spatiotemporal
12
spatiotemporal codes
12
optogenetic frequency
8
frequency scrambling
8
hippocampal theta
8
theta oscillations
8
working memory
8
memory retrieval
8
inhibitory neurons
8
theta rhythms
8

Similar Publications

Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity.

View Article and Find Full Text PDF

Multifaceted Role of Specialized Neuropeptide-Intensive Neurons on the Selective Vulnerability to Alzheimer's Disease in the Human Brain.

Biomolecules

November 2024

Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.

Regarding Alzheimer's disease (AD), specific neuronal populations and brain regions exhibit selective vulnerability. Understanding the basis of this selective neuronal and regional vulnerability is essential to elucidate the molecular mechanisms underlying AD pathology. However, progress in this area is currently hindered by the incomplete understanding of the intricate functional and spatial diversity of neuronal subtypes in the human brain.

View Article and Find Full Text PDF

Neurotropic alphaviruses such as Venezuelan equine encephalitis virus (VEEV) are critical human pathogens that continually expand to naïve populations and for which there are no licensed vaccines or therapeutics. VEEV is highly infectious via the aerosol route and is a recognized weaponizable biothreat that causes neurological disease in humans. The neuropathology of VEEV has been attributed to an inflammatory immune response in the brain yet the underlying mechanisms and specific immune cell populations involved are not fully elucidated.

View Article and Find Full Text PDF

In keeping with the historical focus of this special issue of Hippocampus, this paper reviews the history of my development of the SPEAR model. The SPEAR model proposes that separate phases of encoding and retrieval (SPEAR) allow effective storage of multiple overlapping associative memories in the hippocampal formation and other cortical structures. The separate phases for encoding and retrieval are proposed to occur within different phases of theta rhythm with a cycle time on the order of 125 ms.

View Article and Find Full Text PDF

Paradoxical attenuation of early amyloid-induced cognitive impairment and synaptic plasticity in an aged APP/Tau bigenic rat model.

Acta Neuropathol Commun

December 2024

Department of Pharmacology & Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler Room 1210, Montreal, H3G 1Y6, Canada.

Article Synopsis
  • The study investigates how the combination of amyloid beta and tau pathologies affects neurodegeneration in Alzheimer's disease using a new transgenic rat model (McGill-R-APPxhTau).
  • Initial findings suggest that early exposure to both amyloid and phosphorylated tau can temporarily improve synaptic plasticity and cognitive functions, contrasting with the negative effects observed in models with only one of these pathologies.
  • However, as the disease progresses, the combined presence of amyloid and tau leads to severe cognitive decline, increased neuroinflammation, and neuronal loss, indicating that the protective effects of tau are short-lived.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!