The control of the solution electrochemical potential as well as pH impacts products in redox reactions, but the former gets far less attention. Redox buffers facilitate the maintenance of potentials and have been noted in diverse cases, but they have not been a component of catalytic systems. We report a catalytic system that contains its own built-in redox buffer. Two highly synergistic components (a) the tetrabutylammonium salt of hexavanadopolymolybdate TBAH[PMoVO] () and (b) Cu(ClO) in acetonitrile catalyze the aerobic oxidative deodorization of thiols by conversion to the corresponding nonodorous disulfides at 23 °C (each catalyst alone is far less active). For example, the reaction of 2-mercaptoethanol with ambient air gives a turnover number (TON) = 3 × 10 in less than one hour with a turnover frequency (TOF) of 6 × 10 s with respect to . Multiple electrochemical, spectroscopic, and other methods establish that (1) , a multistep and multielectron redox buffering catalyst, controls the speciation and the ratio of Cu(II)/Cu(I) complexes and thus keeps the solution potential in different narrow ranges by involving multiple POM redox couples and simultaneously functions as an oxidation catalyst that receives electrons from the substrate; (2) Cu catalyzes two processes simultaneously, oxidation of the RSH by and reoxidation of reduced by O; and (3) the analogous polytungstate-based system, TBAH[PWVO] (), has nearly identical cyclic voltammograms (CV) as but has almost no catalytic activity: it does not exhibit self-redox buffering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9906773 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.2c04209 | DOI Listing |
Chem Commun (Camb)
January 2025
Laboratory of Advanced Materials, Aqueous Batteries Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China.
Zinc metal is a promising anode material for zinc-ion batteries (ZIBs), but severe side reactions and dendrite formation hinder its commercialization. In this study, starch is introduced into the ZnSO electrolyte for stabilizing the Zn anode. With abundant hydroxyl groups, starch can reconstruct the H-bond system in the electrolyte, suppressing side reactions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Switchable selectivity achieved by altering reaction conditions within the same photocatalytic system offers great advantages for sustainable chemical transformations and renewable energy conversion. In this study, we investigate an efficient photocatalytic methanol dehydrogenation with controlled selectivity by varying the concentration of nickel cocatalyst, using zinc indium sulfide nanocrystals as a semiconductor photocatalyst, which enables the production of either formaldehyde or ethylene glycol with high selectivity. Control experiments revealed that formaldehyde is initially generated and can either serve as a terminal product or intermediate in producing ethylene glycol, depending on the nickel concentration in the solution.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China.
Herein, we describe a hexavalent tellurium-based chalcogen bonding catalysis platform capable of addressing reactivity and selectivity issues. This research demonstrates that hexavalent tellurium salts can serve as a class of highly active chalcogen bonding catalysts for the first time. The tellurium centers in these hexavalent catalysts have only one exposed interaction site, thus providing a favorable condition for the controlling of reaction selectivity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, CHINA.
Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!