Comparison of Small Biomolecule Ionization and Fragmentation in Using Common MALDI Matrices.

J Am Soc Mass Spectrom

Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, Ohio 43606, United States.

Published: March 2023

Different bacterial cell surface associated biomolecules can be analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and coupled with collision induced dissociation (CID) for identification. is an opportunistic, Gram-negative bacterium that causes acute or chronic biofilm infections. Cells of communicate through a system of signaling biomolecules known as quorum sensing (QS). The QS system can result in the production of biosurfactant rhamnolipids known to associate and alter the cellular membrane. MALDI-TOF utilizes a variety of matrices that can interact differently with biomolecules for selective ionization. We examined six common matrices to determine the optimal matrix specific to different molecule classes in associated with cell surfaces. Three major molecule classes (quinolones, rhamnolipids, and phospholipids) were observed to ionize selectively with the different matrices tested. Sodiated and protonated adducts differed between matrices utilized in our study. Isobaric ions were identified as different molecule classes depending on the matrix used. We highlight the role of matrix selection in MALDI-TOF identification of molecules within a complex biological mixture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983012PMC
http://dx.doi.org/10.1021/jasms.2c00157DOI Listing

Publication Analysis

Top Keywords

molecule classes
12
matrices
5
comparison small
4
small biomolecule
4
biomolecule ionization
4
ionization fragmentation
4
fragmentation common
4
common maldi
4
maldi matrices
4
matrices bacterial
4

Similar Publications

Cysimiditides: RiPPs with a Zn-Tetracysteine Motif and Aspartimidylation.

Biochemistry

January 2025

Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.

Aspartimidylation is a post-translational modification found in multiple families of ribosomally synthesized and post-translationally modified peptides (RiPPs). We recently reported on the imiditides, a new RiPP family in which aspartimidylation is the class-defining modification. Imiditide biosynthetic gene clusters encode a precursor protein and a methyltransferase that methylates a specific Asp residue, converting it to aspartimide.

View Article and Find Full Text PDF

Unprecedented carbonic anhydrase inhibition mechanism: Targeting histidine 64 side chain through a halogen bond.

Arch Pharm (Weinheim)

January 2025

Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.

2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.

View Article and Find Full Text PDF

Catalytic asymmetric C-N cross-coupling towards boron-stereogenic 3-amino-BODIPYs.

Nat Commun

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.

3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs.

View Article and Find Full Text PDF

Mechanistic insights into GLP-1 receptor agonist-induced weight loss through ceRNA network analysis.

Genomics

January 2025

Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China. Electronic address:

Background: GLP-1 receptor agonists (GLP-1RA) have been extensively utilized in the management of body weight in individuals with obesity. Circular RNA (circRNA), a class of covalently closed RNA molecules, has garnered increasing attention for its potential role in the pathogenesis of obesity. However, the specific mechanisms through which circRNA contributes to GLP-1RA-induced weight loss remains elusive.

View Article and Find Full Text PDF

Breast and prostate cancer are among the most commonly diagnosed cancers worldwide. Recent advances in tumor sequencing and gene studies have led to a paradigm shift from treatment centered on the type of tumor to therapy more focused on specific immune phenotype markers and molecular alterations. In this review, we discuss the utility and function of talazoparib concerning prostate cancer treatment and summarize recent and planned clinical trials on talazoparib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!