In this work, interpretable deep learning was used to identify structure-property relationships governing the HOMO-LUMO gap and the relative stability of polybenzenoid hydrocarbons (PBHs) using a ring-based graph representation. This representation was combined with a subunit-based perception of PBHs, allowing chemical insights to be presented in terms of intuitive and simple structural motifs. The resulting insights agree with conventional organic chemistry knowledge and electronic structure-based analyses and also reveal new behaviors and identify influential structural motifs. In particular, we evaluated and compared the effects of linear, angular, and branching motifs on these two molecular properties and explored the role of dispersion in mitigating the torsional strain inherent in nonplanar PBHs. Hence, the observed regularities and the proposed analysis contribute to a deeper understanding of the behavior of PBHs and form the foundation for design strategies for new functional PBHs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.2c02381DOI Listing

Publication Analysis

Top Keywords

structure-property relationships
8
polybenzenoid hydrocarbons
8
structural motifs
8
pbhs
5
interpretable deep-learning
4
deep-learning unveils
4
unveils structure-property
4
relationships polybenzenoid
4
hydrocarbons work
4
work interpretable
4

Similar Publications

Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.

View Article and Find Full Text PDF

An adjustable and scalable method for the continuous flow synthesis of cupric oxide nanoparticles (CuO NPs), targetted the reduction of their activity to synthetic biomembranes to inform the fabrication of nanoparticles (NPs) with reduced toxicity for commercial applications. By manipulating key factors; temperature, residence time, and the ratio of precursor to reductant, precise control over the morphology of CuO NPs is achieved with X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirming the formation of needle-shaped CuO NPs. One-variable-at-a-time studies reveal a relationship between the synthesis conditions and the characteristics of the resultant NPs, with CuO NPs varying controllably between 10-50 nanometres in length and 4-10 nanometres in width.

View Article and Find Full Text PDF

Carboxyl and carbonyl groups of carbon dots co-coordinated assembly with Al to emission-enhanced aggregates for sensitive sensing and efficient removal.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China; Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China. Electronic address:

It is very challenging to prepare carbon dots (CDs) with aggregation-induced emission (AIE) property for simultaneous sensitive sensing and efficient removal. Herein, blue-emission CDs were facilely prepared by one-step solvothermal treatment of vine tea. Optical characterizations demonstrated that AIE phenomenon of CDs came from the restricted intramolecular motion.

View Article and Find Full Text PDF

Thermoelectric properties of undoped crystals of dibenzo[g,p]chrysene (DBC), deuterated DBC (DBC-d16), and 2,10-dimethyl-DBC (DBC-Me2) have been studied to obtain some insights into the relationship between the structural parameters of materials and the giant Seebeck effect. X-ray crystallography showed one-dimensional columnar packing with the interlayer distances (d) for DBC-d16, DBC, and DBC-Me2 were 3.78 Å, 3.

View Article and Find Full Text PDF

New reverse sum Revan indices for physicochemical and pharmacokinetic properties of anti-filovirus drugs.

Front Chem

December 2024

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India.

Ebola and Marburg viruses, biosafety level 4 pathogens, cause severe hemorrhaging and organ failure with high mortality. Although some FDA-approved vaccines or therapeutics like Ervebo for Zaire Ebola virus exist, still there is a lack of effective therapeutics that cover all filoviruses, including both Ebola and Marburg viruses. Therefore, some anti-filovirus drugs such as Pinocembrin, Favipiravir, Remdesivir and others are used to manage infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!