Surface terminations and defects play a central role in determining how water interacts with metal oxides, thereby setting important properties of the interface that govern reactivity such as the type and distribution of hydroxyl groups. However, the interconnections between facets and defects remain poorly understood. This limits the usefulness of conventional notions such as that hydroxylation is controlled by metal cation exposure at the surface. Here, using hematite (α-FeO) as a model system, we show how oxygen vacancies overwhelm surface cation-dependent hydroxylation behavior. Synchrotron-based ambient-pressure X-ray photoelectron spectroscopy was used to monitor the adsorption of molecular water and its dissociation to form hydroxyl groups on (001), (012), or (104) facet-engineered hematite nanoparticles. Supported by density functional theory calculations of the respective surface energies and oxygen vacancy formation energies, the findings show how oxygen vacancies are more prone to form on higher energy facets and induce surface hydroxylation at extremely low relative humidity values of 5 × 10%. When these vacancies are eliminated, the extent of surface hydroxylation across the facets is as expected from the areal density of exposed iron cations at the surface. These findings help answer fundamental questions about the nature of reducible metal oxide-water interfaces in natural and technological settings and lay the groundwork for rational design of improved oxide-based catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c11291 | DOI Listing |
Int J Biol Macromol
December 2024
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China. Electronic address:
Tissue engineering presents promising avenues for addressing issues related to tissue defects and regenerative medicine. However, the translational efficacy of tissue engineering in clinical settings remains limited, primarily due to the inadequate survival rates of implanted tissue scaffolds. This is attributed to the grafts' inability to adequately supply oxygen and their dependence on the diffusion of oxygen from surrounding tissues for tissue regeneration.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
2D inorganic nanomaterials have attracted considerable research interest owing to their exceptional physical and chemical properties. Nonetheless, achieving precise control over the morphology of 2D nanomaterials presents a significant challenge, primarily due to their elevated surface energy and the stringent requirements for growth control. In this study, a designed reduction technique is employed to finely tune the morphology of 2D nanosheets, with iron salts serving as morphology-directing agents.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China.
Diamond particles have many interesting properties and possible applications. However, producing diamond particles with well-defined shapes on a large scale is challenging because diamonds are chemically inert and extremely hard. Here, we show that air oxidation, a routine method for purifying diamonds, can be used to precisely shape diamond particles at scale.
View Article and Find Full Text PDFJ Neurochem
January 2025
Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Minimizing central nervous system (CNS) injury from preterm birth depends upon understanding the critical pathways that underlie essential neurodevelopmental and CNS pathophysiology. Signaling by chemokine (C-X-C motif) ligand 1 (CXCL1) through its cognate receptor, CXCR2 [(C-X-C motif) receptor 2] is essential for neurodevelopment. Increased CXCR2 signaling, however, is implicated in a variety of uterine and neuropathologies, and their role in the CNS injury associated with perinatal brain injury is poorly defined.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China. Electronic address:
Hexavalent chromium (Cr(VI)) poses threat to both ecosystems and human health. Complex pollution conditions, particularly the pH levels, significantly influence the treatment process of Cr(VI). In this study, BiOBr materials were synthesized with exposed (110) facets and Bi vacancies through dual modifications at both grain and atomic scales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!