Clathrin-mediated endocytosis is a conserved eukaryotic membrane trafficking pathway that is driven by a sequentially assembled molecular machinery that contains over 60 different proteins. SH3 domains are the most abundant protein-protein interaction domain in this process, but the function of most SH3 domains in protein dynamics remains elusive. Using mutagenesis and live-cell fluorescence microscopy in the budding yeast , we dissected SH3-mediated regulation of the endocytic pathway. Our data suggest that multiple SH3 domains regulate the actin nucleation-promoting Las17-Vrp1 complex, and that the network of SH3 interactions coordinates both Las17-Vrp1 assembly and dissociation. Furthermore, most endocytic SH3 domain proteins use the SH3 domain for their own recruitment, while a minority use the SH3 domain to recruit other proteins and not themselves. Our results provide a dynamic map of SH3 functions in yeast endocytosis and a framework for SH3 interaction network studies across biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10011730 | PMC |
http://dx.doi.org/10.1091/mbc.E22-09-0406 | DOI Listing |
Mol Divers
January 2025
Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
SH2 (Src Homology 2) domains play a crucial role in phosphotyrosine-mediated signaling and have emerged as promising drug targets, particularly in cancer therapy. STAT3 (Signal Transducer and Activator of Transcription 3), which contains an SH2 domain, plays a pivotal role in cancer progression and immune evasion because it facilitates the dimerization of STAT3, which is essential for their activation and subsequent nuclear translocation. SH2 domain-mediated STAT3 inhibition disrupts this binding, reduces phosphorylation of STAT3, and impairs dimerization.
View Article and Find Full Text PDFCell Death Dis
January 2025
Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.
The transcription factor p63 is expressed in many different isoforms as a result of differential promoter use and splicing. Some of these isoforms have very specific physiological functions in the development and maintenance of epithelial tissues and surveillance of genetic integrity in oocytes. The ASPP family of proteins is involved in modulating the transcriptional activity of the p53 protein family members, including p63.
View Article and Find Full Text PDFArch Biochem Biophys
February 2025
Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:
Protein Sci
January 2025
Department of Physics, University of Toronto, Toronto, Ontario, Canada.
The point mutation N642H of the signal transducer and activator of transcription 5B (STAT5B) protein is associated with aggressive and drug-resistant forms of leukemia. This mutation is thought to promote cancer due to hyperactivation of STAT5B caused by increased stability of the active, parallel dimer state. However, the molecular mechanism leading to this stabilization is not well understood as there is currently no structure of the parallel dimer.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Physiological Chemistry, Faculty of Medicine, Philipps University of Marburg, Marburg, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!