Surface Passivation of Lead Halide Perovskite Solar Cells by a Bifacial Donor-π-Donor Molecule.

ACS Appl Mater Interfaces

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Published: February 2023

Surface passivation is key to the power conversion efficiency (PCE) of organic-inorganic lead halide perovskite solar cells (PSCs). Herein, we report a novel molecular concept of a -symmetric -type bifacial donor-π-donor (D-π-D) passivation molecule (a racemic mixture of enantiomers) with hydrophobic phenyls and hydrophilic tetraethylene glycol-substituted phenyls on each face of the indeno-[1,2-]fluorene π-core. In addition to this bifacial amphiphilic π-core unit, triphenylamine, a well-established passivation donor, effectively passivated the PSC surface, facilitated hole transfer, and increased the maximum PCE from 18.43 to 19.74%. Another notable effect is the removal of remnant PbI and the change in the perovskite orientation on the surface by the -type molecule. In contrast, the -type isomer degraded its long-term stability. We characterized the electrostatic and electronic properties of these molecules and highlighted the advantage of molecular strategy based on a bifacial structure and its stereochemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c18446DOI Listing

Publication Analysis

Top Keywords

surface passivation
8
lead halide
8
halide perovskite
8
perovskite solar
8
solar cells
8
bifacial donor-π-donor
8
surface
4
passivation lead
4
bifacial
4
cells bifacial
4

Similar Publications

Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to minimize non-radiative recombination and, to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance.

View Article and Find Full Text PDF

Non-Volatile Multifunctional Dipole Molecules Enable 19.2% Efficiency for Printable Mesoscopic Perovskite Solar Cells.

Small

January 2025

School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guilin University of Electronic Technology, 1st Jinji Road, Guilin, 541004, P. R. China.

Dipole molecules (DMs) show great potential in defect passivation for printable mesoscopic perovskite solar cells (p-MPSCs), although the crystallization process of p-MPSCs is more intricate and challenging than planar perovskite solar cells. In this work, a series of non-volatile multifunctional DMs are employed as additives to enhance the crystallization of perovskites and improve both the power conversion efficiency (PCE) and stability of the devices. This enhancement is achieved by regulating the side groups of benzoic acid molecules with the electron-donating groups such as guanidine (─NH─C(═NH)─NH), amino (─NH) and formamidine (─C(═NH)─NH).

View Article and Find Full Text PDF

Carbon dot embedded hybrid microgel from synthesis to sensing: Experimental and theoretical approach.

Anal Chim Acta

February 2025

Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal, 741249, India. Electronic address:

Background: The intellectual progress in fabricating artificial probes for selective appraisal of biologically admissible amino acids has displayed exponential growth in recent era.The neoteric era in material science has witnessed the significant application of carbon quantum dots (CQDs). However, the hybrid microgel of CQDs was less explored.

View Article and Find Full Text PDF

Tailoring pyridine bridged chalcogen-concave molecules for defects passivation enables efficient and stable perovskite solar cells.

Nat Commun

January 2025

National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China.

Suppressing deep-level defects at the perovskite bulk and surface is indispensable for reducing the non-radiative recombination losses and improving efficiency and stability of perovskite solar cells (PSCs). In this study, two Lewis bases based on chalcogen-thiophene (n-Bu4S) and selenophene (n-Bu4Se) having tetra-pyridine as bridge are developed to passivate defects in perovskite film. The uncoordinated Pb and iodine vacancy defects can interact with chalcogen-concave group and pyridine group through the formation of the Lewis acid-base adduct, particularly both the defects can be surrounded by concave molecules, resulting in effective suppression charge recombination.

View Article and Find Full Text PDF

Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells.

Materials (Basel)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.

Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!