Object: Exploring mouse brains by rapid 3D-Diffusion Tensor Imaging (3D-DTI) of high spatial resolution (HSR) is challenging in vivo. Here we use the super resolution reconstruction (SRR) postprocessing method to demonstrate its performance on Microtubule-Associated-Protein6 Knock-Out (MAP6-KO) mice.
Materials And Methods: Two spin-echo DTI were acquired (9.4T, CryoProbe RF-coil): (i)-multislice 2D-DTI, (echo-planar integrating reversed-gradient) acquired in vivo in the three orthogonal orientations (360 μm slice-thickness, 120 × 120 μm in-plane resolution, 56 min scan duration); used in SRR software to reconstruct SRR 3D-DTI with HSR in slice-plane (120 × 120 × 120 µm) and (ii)-microscopic 3D-DTI (µ-3D-DTI), (100 × 100 × 100 µm; 8 h 6 min) on fixed-brains ex vivo, that were removed after paramagnetic contrast-agent injection to accelerate scan acquisition using short repetition-times without NMR-signal sensitivity loss.
Results: White-matter defects, quantified from both 3D-DTI fiber-tracking were found very similar. Indeed, as expected the fornix and cerebral-peduncle volume losses were - 39% and - 35% in vivo (SRR 3D-DTI) versus - 34% and - 32% ex vivo (µ-3D-DTI), respectively (p<0.001). This finding is robust since the µ-3D-DTI feasibility on MAP6-KO ex vivo was already validated by fluorescent-microscopy of cleared brains.
Discussion: First performance of the SRR to generate rapid HSR 3D-DTI of mouse brains in vivo is demonstrated. The method is suitable in neurosciences for longitudinal studies to identify molecular and genetic abnormalities in mouse models that are of growing developments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10334-023-01061-7 | DOI Listing |
Pac Symp Biocomput
December 2024
Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
Alzheimer's disease (AD) is characterized by cognitive decline and memory loss due to the abnormal accumulation of amyloid-beta (Aβ) plaques and tau tangles in the brain; its onset and progression also depend on genetic factors such as the apolipoprotein E (APOE) genotype. Understanding how these factors affect the brain's neural pathways is important for early diagnostics and interventions. Tractometry is an advanced technique for 3D quantitative assessment of white matter tracts, localizing microstructural abnormalities in diseased populations in vivo.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
December 2024
Department of Medical Biophysics, University of Toronto, ON, Canada; Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada. Electronic address:
Background: Novel treatment strategies are needed to improve the structure and function of the myocardium post-infarction. In vitro-matured pluripotent stem cell-derived cardiomyocytes (PSC-CMs) have been shown to be a promising regenerative strategy. We hypothesized that mature PSC-CMs will have anisotropic structure and improved cell alignment when compared to immature PSC-CMs using cardiovascular magnetic resonance (CMR) in a guinea pig model of cardiac injury.
View Article and Find Full Text PDFMagn Reson Med
November 2023
Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
Purpose: 3D pulse sequences enable high-resolution acquisition with a high SNR and ideal slice profiles, which, however, is particularly difficult for diffusion MRI (dMRI) due to the additional phase errors from diffusion encoding.
Methods: We proposed a twin navigator-based 3D diffusion-weighted gradient spin-echo (GRASE) sequence to correct the phase errors between shots and between odd and even spin echoes for human whole-brain acquisition. We then compared the SNR of 3D GRASE and 2D simultaneous multi-slice EPI within the same acquisition time.
MAGMA
August 2023
University. Grenoble Alpes, Inserm, U1205, BrainTech Lab, 1, place Commandant Nal, 38700, La Tronche, Grenoble, France.
Object: Exploring mouse brains by rapid 3D-Diffusion Tensor Imaging (3D-DTI) of high spatial resolution (HSR) is challenging in vivo. Here we use the super resolution reconstruction (SRR) postprocessing method to demonstrate its performance on Microtubule-Associated-Protein6 Knock-Out (MAP6-KO) mice.
Materials And Methods: Two spin-echo DTI were acquired (9.
Magn Reson Imaging
October 2022
Department of Radiology, Duke University School of Medicine, Durham, NC, USA.
Purpose: To evaluate the magic angle effect on diffusion tensor imaging (DTI) measurements in rat ligaments and mouse brains.
Methods: Three rat knee joints and three mouse brains were scanned at 9.4 T using a modified 3D diffusion-weighted spin echo pulse sequence with the isotropic spatial resolution of 45 μm.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!