AI Article Synopsis

  • The study highlights the challenges of traditional methods in teaching complex heart anatomy, emphasizing the need for innovative educational tools.
  • Recent advancements in using 3D digital models may not suffice for cardiac education due to the heart's dynamic and intricate nature.
  • Evaluation of a new approach combining time-resolved imaging and blood flow simulations showed significant improvements in medical students' understanding and exam performance, indicating the potential for these tools in teaching complex physiological concepts.

Article Abstract

Difficulties in achieving knowledge about physiology and anatomy of the beating heart highlight the challenges with more traditional pedagogical methods. Recent research regarding anatomy education has mainly focused on digital three-dimensional models. However, these pedagogical improvements may not be entirely applicable to cardiac anatomy and physiology due to the multidimensional complexity with moving anatomy and complex blood flow. The aim of this study was therefore to evaluate whether high quality time-resolved anatomical images combined with realistic blood flow simulations improve the understanding of cardiac structures and function. Three time-resolved datasets were acquired using time-resolved computed tomography and blood flow was computed using Computational Fluid Dynamics. The anatomical and blood flow information was combined and interactively visualized using volume rendering on an advanced stereo projection system. The setup was tested in interactive lectures for medical students. Ninety-seven students participated. Summative assessment of examinations showed significantly improved mean score (18.1 ± 4.5 vs 20.3 ± 4.9, p = 0.002). This improvement was driven by knowledge regarding myocardial hypertrophy and pressure-velocity differences over a stenotic valve. Additionally, a supplementary formative assessment showed significantly more agreeing answers than disagreeing answers (p < 0.001) when the participants subjectively evaluated the contribution of the visualizations to their education and knowledge. In conclusion, the use of simultaneous visualization of time-resolved anatomy data and simulated blood flow improved medical students' results, with a particular effect on understanding of cardiac physiology and these simulations may be useful educational tools for teaching complex anatomical and physiological concepts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ca.24009DOI Listing

Publication Analysis

Top Keywords

blood flow
16
understanding cardiac
8
enhancing students'
4
students' understanding
4
cardiac physiology
4
physiology visualization
4
visualization difficulties
4
difficulties achieving
4
achieving knowledge
4
knowledge physiology
4

Similar Publications

Objective: Loss of function of the phospholipid scramblase (PLS) TMEM16F results in Scott Syndrome, a hereditary bleeding disorder generally attributed to intrinsic platelet dysfunction. The role of TMEM16F in endothelial cells, however, is not well understood. We sought to test the hypothesis that endothelial TMEM16F contributes to hemostasis by measuring bleeding time and venous clotting in endothelial-specific knockout (ECKO) mice.

View Article and Find Full Text PDF

: The utilization of intra-aortic balloon pump (IABP) and Impella has been suggested as means of left ventricular unloading in veno-arterial extracorporeal membrane oxygenation (VA-ECMO) patients. This study aimed to assess the local hemodynamic alterations in VA-ECMO patients through simulation analyses. : In this study, a 0D-3D multiscale model was developed, wherein resistance conditions were employed to define the flow-pressure relationship.

View Article and Find Full Text PDF

: Caries or iatrogenic thermal trauma of the teeth have a significant impact on the dental pulp structure connected with stimulation of angiogenesis and lymphangiogenesis. Therefore, the aim of the study was to identify the difference in the rate of heat dissipation by vessels present in the dental pulp. : Freshly extracted healthy ( = 10) and carious ( = 14) molars and premolars were cut on a diamond saw and subjected to active thermographic examination and then subjected to lymphoscintigraphy and X-ray examination.

View Article and Find Full Text PDF

Markers for Pressure Injury Risk in Individuals with Chronic Spinal Cord Injury: A Pilot Study.

Adv Skin Wound Care

January 2025

At University of Texas Southwestern Medical Center, Dallas, Texas, United States, Yi-Ting Tzen, PhD, is Assistant Professor, Department of Applied Clinical Research, Department of Physical Medicine and Rehabilitation, and Department of Orthopaedic Surgery; Wei-Han Tan, MD, is Assistant Professor, VA North Texas Health Care System, Dallas, and Department of Physical Medicine and Rehabilitation; Patricia T. Champagne, PhD, is Postdoctoral Fellow, Department of Applied Clinical Research and Department of Physical Medicine and Rehabilitation; Jijia Wang, PhD, is Assistant Professor, Department of Applied Clinical Research; and Merrine Klakeel, DO, is Assistant Professor, Department of Physical Medicine and Rehabilitation. Kath M. Bogie, DPhil, is Professor, Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, United States, and VA Northeast Ohio Healthcare System, Cleveland. Timothy J. Koh, PhD, is Professor, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Illinois, United States.

Objective: To identify markers associated with pressure injury (PrI) history in individuals with spinal cord injury (SCI) using two approaches: skin blood flow (SBF) response toward localized heating, and serum marker for insulin resistance.

Methods: For this cross-sectional, observational study of adults with chronic traumatic SCI at T12 and above, researchers recruited two groups of participants: with history of PrI (group 1), and without history of PrI (group 2). The study protocol included obtaining fasting blood samples and measurement of SBF at bilateral heels with localized heating of 42 °C for 30 minutes from all participants.

View Article and Find Full Text PDF

Blood flow restriction training (BFRT) has been previously studied as an alternative form of resistance training to gain lean mass and improve performance outcomes. However, in all exercise studies of BFRT, the proportion of female participants represents only 17-29% of all research participants. This highlights a strong underrepresentation of females and the need for more knowledge on the impact of BFRT and sex differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!