Introduction: Sleep deprivation increases cerebrospinal fluid (CSF) amyloid beta (Aβ) and tau levels; however, sleep's effect on Aβ and tau in plasma is unknown.

Methods: In a cross-over design, CSF Aβ and tau concentrations were measured in five cognitively normal individuals who had blood and CSF collected every 2 hours for 36 hours during sleep-deprived and normal sleep control conditions.

Results: Aβ40, Aβ42, unphosphorylated tau threonine181 (T181), unphosphorylated tau threonine-217 (T217), and phosphorylated T181 (pT181) concentrations increased ∼35% to 55% in CSF and decreased ∼5% to 15% in plasma during sleep deprivation. CSF/plasma ratios of all Alzheimer's disease (AD) biomarkers increased during sleep deprivation while the CSF/plasma albumin ratio, a measure of blood-CSF barrier permeability, decreased. CSF and plasma Aβ42/40, pT181/T181, and pT181/Aβ42 ratios were stable longitudinally in both groups.

Discussion: These findings show that sleep loss alters some plasma AD biomarkers by lowering brain clearance mechanisms and needs to be taken into account when interpreting individual plasma AD biomarkers but not ratios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366339PMC
http://dx.doi.org/10.1002/alz.12930DOI Listing

Publication Analysis

Top Keywords

sleep deprivation
12
aβ tau
12
sleep loss
8
alzheimer's disease
8
disease biomarkers
8
unphosphorylated tau
8
deprivation csf/plasma
8
plasma biomarkers
8
sleep
5
csf
5

Similar Publications

Background: The increasing prevalence of primary hypertension among children and adolescents is a global health concern, with inadequate sleep duration identified as a significant risk factor. This study investigates the impact of weekday-weekend sleep duration gap (WWSDG) on hypertension among American adolescents.

Methods: Using data from the NHANES 2017-2020 cohort, we analyzed sleep patterns and hypertension prevalence among 430 adolescents.

View Article and Find Full Text PDF

Calcium/calmodulin-dependent protein kinase II α and β differentially regulate mammalian sleep.

Commun Biol

January 2025

Chinese Institute of Brain Research, Beijing (CIBR), and Chinese Institutes for Medical Research, Beijing (CIMR), Capital Medical University, Beijing, China.

While sleep is important, our understanding of its molecular mechanisms is limited. Over the last two decades, protein kinases including Ca/calmodulin-dependent protein kinase II (CaMKII) α and β have been implicated in sleep regulation. Of all the known mouse genetic mutants, the biggest changes in sleep is reported to be observed in adult mice with sgRNAs for Camk2b injected into their embryos: sleep is reduced by approximately 120 min (mins) over 24 h (hrs).

View Article and Find Full Text PDF

Cortical excitability on sleep deprivation measured by transcranial magnetic stimulation: A systematic review and meta-analysis.

Brain Res Bull

January 2025

Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China. Electronic address:

Sleep deprivation is a common public problem, and researchers speculated its neurophysiological mechanisms related to cortical excitatory and inhibitory activity. Recently, transcranial magnetic stimulation combined with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) have been used to assess cortical excitability in sleep-deprived individuals, but the results were inconsistent. Therefore, we conducted a meta-analysis to summarize relevant TMS-evoked indices of excitability and inhibition for exploring the cortical effects of sleep deprivation.

View Article and Find Full Text PDF

This prospective cohort study is aimed to investigate circadian variations in corneal parameters, focusing on sleep-deprived subjects. Sixty-four healthy individuals (age range: 21-76 years) actively participated in this study, undergoing examinations at least five times within a 24-hour timeframe. The analysis encompassed keratometric parameters of the cornea's front (F) and back (B) surfaces, refractive power in flattest and steepest axes (K1, K2), astigmatism (Astig) and its axis (Axis), aspheric coefficient (Asph), corneal pachymetry values of thinnest corneal thickness (Pachy Min) and corneal thickness in the center of the pupil (Pachy Pupil), volume relative to the 3 and 10 mm corneal diagonal (Vol D3, Vol D10) and surface variance index (ISV).

View Article and Find Full Text PDF

Sleep deprivation affects pain sensitivity by increasing oxidative stress and apoptosis in the medial prefrontal cortex of rats via the HDAC2-NRF2 pathway.

Biomed J

January 2025

Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China. Electronic address:

Sleep is crucial for sustaining normal physiological functions, and sleep deprivation has been associated with increased pain sensitivity. The histone deacetylases (HDACs) are known to significantly regulate in regulating neuropathic pain, but their involvement in nociceptive hypersensitivity during sleep deprivation is still not fully understood. Utilizing a modified multi-platform water environment technique to establish a sleep deprivation model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!