Objective: Sleep strongly activates interictal epileptic activity through an unclear mechanism. We investigated how scalp sleep slow waves (SSWs), whose positive and negative half-waves reflect the fluctuation of neuronal excitability between the up and down states, respectively, modulate interictal epileptic events in focal epilepsy.

Methods: Simultaneous polysomnography was performed in 45 patients with drug-resistant focal epilepsy during intracranial electroencephalographic recording. Scalp SSWs and intracranial spikes and ripples (80-250 Hz) were detected; ripples were classified as type I (co-occurring with spikes) or type II (occurring alone). The Hilbert transform was used to analyze the distributions of spikes and ripples in the phases of SSWs.

Results: Thirty patients with discrete seizure-onset zone (SOZ) and discernable sleep architecture were included. Intracranial spikes and ripples accumulated around the negative peaks of SSWs and increased with SSW amplitude. Phase analysis revealed that spikes and both ripple subtypes in SOZ were similarly facilitated by SSWs exclusively during down state. In exclusively irritative zones outside SOZ (EIZ), SSWs facilitated spikes and type I ripples across a wider range of phases and to a greater extent than those in SOZ. The type II and type I ripples in EIZ were modulated by SSWs in different patterns. Ripples in normal zones decreased specifically during the up-to-down transition and then increased after the negative peak of SSW, with a characteristically high post-/pre-negative peak ratio.

Significance: SSWs modulate interictal events in an amplitude-dependent and region-specific pattern. Pathological ripples and spikes were facilitated predominantly during the cortical down state. Coupling analysis of SSWs could improve the discrimination of pathological and physiological ripples and facilitate seizure localization.

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.17518DOI Listing

Publication Analysis

Top Keywords

spikes ripples
12
sleep slow
8
slow waves
8
focal epilepsy
8
interictal epileptic
8
modulate interictal
8
intracranial spikes
8
ripples
8
spikes type
8
ssws
7

Similar Publications

SEEG seizure onset patterns in mesial temporal lobe epilepsy: A cohort study with 76 patients.

Neurophysiol Clin

January 2025

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China. Electronic address:

Objectives: In the present study with a large cohort, we aimed to characterize intracerebral seizure onset patterns (SOP) of mesial temporal lobe epilepsy (mTLE), with or without hippocampal sclerosis (HS) as identified via magnetic resonance imaging (MRI).

Methods: We retrospectively analyzed 255 seizures of 76 consecutive patients with mTLE explored by stereoelectroencephalography (SEEG), including HS-mTLE (n = 52) and non-HS- mTLE (n = 24). Relevant results were obtained by a combination of spectral analysis and manual review.

View Article and Find Full Text PDF

Introduction: This study investigated low-density scalp electrical source imaging of the ictal onset zone and interictal spike ripple high-frequency oscillation networks using source coherence maps in the pediatric epilepsy surgical workup. Intracranial monitoring, the gold standard for determining epileptogenic zones, has limited spatial sampling. Source coherence analysis presents a promising new non-invasive technique.

View Article and Find Full Text PDF

Sparse high-dimensional decomposition of non-primary auditory cortical receptive fields.

PLoS Comput Biol

January 2025

Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States of America.

Characterizing neuronal responses to natural stimuli remains a central goal in sensory neuroscience. In auditory cortical neurons, the stimulus selectivity of elicited spiking activity is summarized by a spectrotemporal receptive field (STRF) that relates neuronal responses to the stimulus spectrogram. Though effective in characterizing primary auditory cortical responses, STRFs of non-primary auditory neurons can be quite intricate, reflecting their mixed selectivity.

View Article and Find Full Text PDF

Objective: To examine the blood oxygen level-dependent (BOLD) responses in the default mode network (DMN) and subcortical regions in relation to epileptic events in scalp EEG and intracranial EEG (iEEG).

Methods: We retrospectively compared BOLD responses in the DMN and subcortical regions to interictal epileptiform discharge (IED) characteristics of the scalp and iEEG in consecutive patients with focal epilepsy. All voxels were used as the denominator to assess the positive and negative BOLD ratios in each region, and the percentage of voxels with significant activation or deactivation was assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!