Rationale: Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) of tissues became popular in the last decade. Consequently, adapting sample preparation methods for different materials turned out to be a pivotal step for successful analysis due to the requirement of sample slices of 12-20 μm thickness. However, acquiring thin sections compatible with MALDI-IMS for unusual samples is challenging, as existing histological protocols may not be suitable, thus requiring new methods. Açaí (Euterpe oleracea Mart.) seed is an example of a challenging material due to its toughness and resistance to crack, therefore our goal was to develop a methodology to obtain thin (12-20 μm) and entire sections of açaí seeds for MALDI-IMS analysis.

Methods: Different strategies were evaluated for obtaining thin sections of seeds, and the combination of the following steps was found to be the most suitable option: (i) softening of seeds by water immersion for 24 h; (ii) transversal cut of seeds to obtain half-seeds using a razor blade and a hammer; (iii) half-seeds imbibition in gelatin; (iv) samples sectioning using a cryostat at -20°C to obtain samples with 12-20 μm thickness; (v) collection of samples in an indium tin oxide-coated glass slide covered by double-sided copper tape to avoid sample wrapping and ensure adhesion after unfreezing; and (vi) storage of samples in a -80°C freezer, if necessary.

Results: This adapted sample preparation method enabled the analysis of açaí seeds by MALDI-IMS, providing spatial distribution of carbohydrates in the endosperm.

Conclusions: The adaptations developed for sample preparation will help investigate the metabolic and physiological properties of açaí seeds in future studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.9474DOI Listing

Publication Analysis

Top Keywords

thin sections
12
sample preparation
12
açaí seeds
12
sections açaí
8
açaí euterpe
8
euterpe oleracea
8
oleracea mart
8
mart seed
8
mass spectrometry
8
12-20 μm thickness
8

Similar Publications

The most important aspect of sorbent-based approaches is the use of a sustainable, readily available, and cost-effective sorbent material for sample analysis. Biochar is an emerging and prominent sorbent material for various applications in sorbent-based techniques due to its availability, affordability, eco-friendly nature, porosity, pore structure, abundance of aliphatic and aromatic carbon structures, and abundant oxygen-containing functional groups. On the basis of the numerous benefits of biochar, this review discusses why biochar is the preferred sorbent in sorptive-based techniques.

View Article and Find Full Text PDF

Electron Tomography of Organelles and Vesicles in the Investigation of SNARE Function and Localization.

Methods Mol Biol

January 2025

Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, Cambridge, UK.

Electron tomography can provide additional morphological information not easily obtained by conventional transmission electron microscopy of thin sections. It uses a goniometer stage in the electron microscope to tilt the specimen and collect a series of 2D images from different orientations, which are combined to provide a 3D volume tomogram and a colored reconstruction of the morphological feature(s) of interest. Here we describe the protocols for its use in visualizing changes in organelle morphology after depletion of the SNARE proteins VAMP7 and VAMP8 and to study VAMP7 localization on endolysosomes/lysosomes.

View Article and Find Full Text PDF

Spatial metabolomics platform combining mass spectrometry imaging and in-depth chemical characterization with capillary electrophoresis.

Talanta

January 2025

Department of Chemistry-BMC, Uppsala University, 75123, Uppsala, Sweden; Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, Sweden. Electronic address:

Spatial metabolomics offers the combination of molecular identification and localization. As a tool for spatial metabolomics, mass spectrometry imaging (MSI) can provide detailed information on localization. However, molecular annotation with MSI is challenging due to the lack of separation prior to mass spectrometric analysis.

View Article and Find Full Text PDF

Functionalization of Polymer Surfaces for Organic Photoresist Materials.

ACS Appl Mater Interfaces

January 2025

Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78741, United States.

Photoresists are thin film materials designed to transform an optimal image into a mechanical mask. Diverse exposure techniques such as photolithography induce modifications in the exposed areas that result in solubility changes that can then be selectively removed with appropriate agents (developers). Photoresist materials need to keep pace with the increasingly demand for feature size reduction.

View Article and Find Full Text PDF

This article presents a new parametric method for shaping flat transverse frame structural systems supporting thin-walled roofs made of flat sheets folded unidirectionally and transformed elastically to various shell forms. The parameterization was limited to one independent variable, that is the stiffness of the support joints. For different discrete values of simulated stiffness, the surface areas of the cross sections of the tensile and compressed elements and the section modulus of the bending elements were calculated so as to obtain the optimized work of the frame and its elements in the assumed load environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!