Imbalance in brain glucose metabolism and epigenetic modulation during the disease course of insulin resistance (IR) associated with Parkinson's disease (PD) risk remains a prime concern. Fibroblast growth factor 21 (FGF21), the metabolic hormone, improves insulin sensitivity and elicits anti-diabetic properties. Chronic stress during brain IR may modulate the FGF21 expression and its dynamic release via epigenetic modifications. Metformin regulates and increases the expression of FGF21 which can be modulating in obesity, diabetes, and IR. Hence, this study was designed to investigate the FGF21 expression modulation via an epigenetic mechanism in PD and whether metformin (MF), an autophagy activator, and sodium butyrate (NaB), a pan histone deacetylase inhibitor, alone and in combination, exert any therapeutic benefit in PD pathology exacerbated by high-fat diet (HFD). Our results portray that the combination treatment with MF and NaB potentially attenuated the abnormal lipid profile and increased motor performance for the rats fed with HFD for 8 weeks followed by intrastriatal 6-hydroxy dopamine administration. The enzyme-linked immunosorbent assay (ELISA) estimations of C-reactive protein, tumor necrosis factor-α, interleukin-1 beta and 6, and FGF21 exhibited extensive downregulation after treatment with the combination. Lastly, mRNA, western blot, histological, and cresyl violet staining depicted that the combination treatment can restore degenerated neuronal density and increase the protein level compared to the disease group. The findings from the study effectively conclude that the epigenetic mechanism involved in FGF21 mediated functional abnormalities in IR-linked PD pathology. Hence, combined treatment with MF and NaB may prove to be a novel combination in ameliorating IR-associated PD in rats, probably via the upregulation of FGF21 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.2c00659 | DOI Listing |
Life Metab
June 2024
Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis.
View Article and Find Full Text PDFJ Transl Med
January 2025
Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
Background: Acute pancreatitis (AP) presents a significant clinical challenge with limited therapeutic options. The complex etiology and pathophysiology of AP emphasize the need for innovative treatments. This study explores mRNA-based therapies delivering fibroblast growth factor 21 (FGF21) and apolipoprotein A1 (APOA1), alone and in combination, for treating experimental AP.
View Article and Find Full Text PDFMol Metab
January 2025
Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, 30120, Spain; Institute of Biomedical Research of Murcia, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain. Electronic address:
Objective: Circadian rhythms of metabolic, hormonal, and behavioral fluctuations and their alterations can impact health. An important gap in knowledge in the field is whether the time of the day of exercise and the age of onset of exercise exert distinct effects at the level of whole-body adipose tissue and body composition. The goal of the present study was to determine how exercise at different times of the day during adolescence impacts the adipose tissue transcriptome and content in a rodent model.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
Background: Diabetic nephropathy (DN) is a prevalent global renal illness and one of the main causes of end-stage renal disease (ESRD). FGF21 has been shown to ameliorate diabetic nephropathy, and in addition FGF-21-treated mice impeded mitogenicity, whereas it is unclear whether FGF21 can influence DN progression by regulating the cell cycle in diabetic nephropathy.
Methods: In order to create a diabetic model, STZ injections were given to C57BL/6J mice for this investigation.
Background: Fibroblast growth factor 21 (FGF21) and Methyltransferase-like 14 (METTL14) have been identified to be involved in spinal cord injury (SCI). However, whether FGF21 functioned in SCI via METTL14-induced N6-methyladenosine (m6A) modification remains unclear.
Materials And Methods: PC12 cells were exposed to lipopolysaccharide (LPS) in vitro.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!