Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
COVID-19 is the most acute global public health crisis of this century. Current trends in the global infected and death numbers suggest that human mobility leading to high social mixing are key players in infection spread, making it imperative to incorporate the spatiotemporal and mobility contexts to future prediction models. In this work, we present a generalized spatiotemporal model that quantifies the role of human social mixing propensity and mobility in pandemic spread through a composite latent factor. The proposed model calculates the exposed population count by utilizing a nonlinear least-squares optimization that exploits the intrinsic linearity in SEIR (Susceptible, Exposed, Infectious, or Recovered). We also present inverse coefficient of variation of the daily exposed curve as a measure for infection duration and spread. We carry out experiments on the mobility and COVID-19 infected and death curves of New York City to show that boroughs with high inter-zone mobility indeed exhibit synchronicity in peaks of the daily exposed curve as well as similar social mixing patterns. Furthermore, we demonstrate that several nations with high inverse coefficient of variations in daily exposed numbers are amongst the worst COVID-19 affected places. Our insights on the effects of lockdown on human mobility motivate future research in the identification of hotspots, design of intelligent mobility strategies and quarantine procedures to curb infection spread.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545005 | PMC |
http://dx.doi.org/10.1109/TETCI.2021.3059007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!