A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adaptive nitrogen inputs sustain water-nitrogen use and improve maize productivity with varied precipitation conditions on a semi-arid agroecosystem. | LitMetric

Background: Maize productivity in semi-arid regions is increasingly at risk because of the sparse and uneven precipitation, and it is also restricted by excessive or insufficient fertilization management strategies. A 4-year (2016-2019) field experiment was therefore conducted to show the effects of fertilizer with five nitrogen levels (0, 75-90, 150-180, 270, and 360 kg ha , represented as N , N , N , N , N , respectively) under two variable precipitation patterns (rainy at pre-anthesis in 2016 and 2018 versus dry at pre-anthesis in 2017 and 2019) on soil water storage (SWS), water use efficiency (WUE), nitrogen use efficiency (NUE), and maize yield in the Loess Plateau.

Results: Nitrogen inputs increased the amount of above-ground dry matter and the WUE for dry matter (WUEd). Dry years at pre-anthesis significantly reduced dry matter accumulation and kernel number per plant. However, soil water storage before sowing (SWSs) decreased from 440 mm in 2016 to 384 mm in 2019, and the increase in fertilization resulted in the water imbalance. Both the maximum grain yield and WUE for grain yield were found in N under rainy years at pre-anthesis, whereas in N  under dry years at pre-anthesis. The average nitrogen recovery efficiency (NRE), nitrogen agronomy efficiency (NAE) and nitrogen partial factor productivity (NPFP) decreased with increases in N application, compared with N , the NRE,NAE and NPFP of N increased by 63.5%, 189.2% and 135.5%, respectively.

Conclusions: Reducing basal N fertilizers could enhance maize yield and maintain moderate water and nitrogen productivity in years with less rainfall. © 2023 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.12468DOI Listing

Publication Analysis

Top Keywords

dry matter
12
years pre-anthesis
12
nitrogen inputs
8
maize productivity
8
soil water
8
water storage
8
maize yield
8
dry years
8
grain yield
8
nitrogen
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!