Background: Somatic embryogenesis (SE) is one of the most promising processes for large-scale dissemination of elite varieties. However, for many plant species, optimizing SE protocols still relies on a trial and error approach. We report the first global scale transcriptome profiling performed at all developmental stages of SE in coffee to unravel the mechanisms that regulate cell fate and totipotency.
Results: RNA-seq of 48 samples (12 developmental stages × 4 biological replicates) generated 90 million high quality reads per sample, approximately 74% of which were uniquely mapped to the Arabica genome. First, the statistical analysis of transcript data clearly grouped SE developmental stages into seven important phases (Leaf, Dedifferentiation, Primary callus, Embryogenic callus, Embryogenic cell clusters, Redifferentiation and Embryo) enabling the identification of six key developmental phase switches, which are strategic for the overall biological efficiency of embryo regeneration. Differential gene expression and functional analysis showed that genes encoding transcription factors, stress-related genes, metabolism-related genes and hormone signaling-related genes were significantly enriched. Second, the standard environmental drivers used to control SE, i.e. light, growth regulators and cell density, were clearly perceived at the molecular level at different developmental stages. Third, expression profiles of auxin-related genes, transcription factor-related genes and secondary metabolism-related genes were analyzed during SE. Gene co-expression networks were also inferred. Auxin-related genes were upregulated during dedifferentiation and redifferentiation while transcription factor-related genes were switched on from the embryogenic callus and onward. Secondary metabolism-related genes were switched off during dedifferentiation and switched back on at the onset of redifferentiation. Secondary metabolites and endogenous IAA content were tightly linked with their respective gene expression. Lastly, comparing Arabica embryogenic and non-embryogenic cell transcriptomes enabled the identification of biological processes involved in the acquisition of embryogenic capacity.
Conclusions: The present analysis showed that transcript fingerprints are discriminating signatures of cell fate and are under the direct influence of environmental drivers. A total of 23 molecular candidates were successfully identified overall the 12 developmental stages and can be tested in many plant species to optimize SE protocols in a rational way.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875526 | PMC |
http://dx.doi.org/10.1186/s12864-022-09098-z | DOI Listing |
Plants (Basel)
December 2024
College of Life Science, Jilin Agricultural University, Changchun 130118, China.
genes are essential for plant development and secondary metabolism. The majority of genes within a genome exist in a gene family, each with specific functions. Ginseng is an herb used in medicine for its potential health benefits.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China.
Quinoa () is an Andean allotetraploid pseudocereal crop with higher protein content and balanced amino acid composition in the seeds. Ammonium (NH), a direct source of organic nitrogen assimilation, mainly transported by specific transmembrane ammonium transporters (), plays important roles in the development, yield, and quality of crops. Many and their functions have been identified in major crops; however, no systematic analyses of and their regulatory networks, which is important to increase the yield and protein accumulation in the seeds of quinoa, have been performed to date.
View Article and Find Full Text PDFToxics
December 2024
Department of Social Pediatrics, Institute of Child Health, Hacettepe University, Ankara 06230, Türkiye.
Background/objectives: Endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere with hormone regulation, leading to adverse health outcomes. Despite the wide use of EDCs in daily products like plastics, personal care items, and food packaging, public awareness remains low. Pregnant women and new mothers are particularly vulnerable, as exposure to EDCs during early life stages can have long-term health impacts.
View Article and Find Full Text PDFMicroorganisms
November 2024
Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
In animals, growth and development are strongly correlated with the gut microbiota. The gut of the economically important marine crab () harbors a diverse microbial community, yet its associations with the surrounding environment, growth performance, and developmental stages remain obscure. In this study, we first characterized stage-specific microbiomes and shifts in the contributions of live feed and water via SourceTracker.
View Article and Find Full Text PDFMicroorganisms
November 2024
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China.
Sunflower Wilt (SVW) caused by is a significant threat to sunflower production in China. This soilborne disease is difficult to control. It has been observed that delayed sowing reduces the severity of SVW on different varieties and across various locations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!