Ectopic expression of MmCYP1A1, a mouse cytochrome P450 gene, positively regulates stress tolerance in apple calli and Arabidopsis.

Plant Cell Rep

National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China.

Published: February 2023

Ectopic expression of MmCYP1A1 gene from Mus musculus in apple calli and Arabidopsis increased the levels of melatonin and 6-hydroxymelatonin, and improved their stress resistance. Melatonin occurs widely in organisms, playing a key regulatory role. CYP1A1 is a cytochrome P450 monooxygenase, involved in the melatonin metabolism, and is responsible for the synthesis of 6-hydroxymelatonin from melatonin. Melatonin and 6-hydroxymelatonin have strong antioxidant activities in animals. Here, we cloned MmCYP1A1 from Mus musculus and found that ectopic expression of MmCYP1A1 improved the levels of melatonin and 6-hydroxymelatonin in transgenic apple calli and Arabidopsis. Subsequently, we observed that MmCYP1A1 increased the tolerance of transgenic apple calli and Arabidopsis to osmotic stress simulated by polyethylene glycol 6000 (PEG 6000), as well as resistance of transgenic Arabidopsis to drought stress. Further, the number of lateral roots of MmCYP1A1 transgenic Arabidopsis were enhanced significantly after PEG 6000 treatment. The expression of MmCYP1A1 remarkably reduced malondialdehyde (MDA) content, electrolyte leakage, accumulation of HO and O during stress treatment. Moreover, MmCYP1A1 enhanced stress tolerance in apple calli and Arabidopsis by increasing the expression levels of resistance genes. MmCYP1A1 also promoted stomatal closure in transgenic Arabidopsis to reduce leaf water loss during drought. Our results indicate that MmCYP1A1 plays a key role in plant stress tolerance, which may provide a reference for future plant stress tolerance studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-022-02969-5DOI Listing

Publication Analysis

Top Keywords

apple calli
20
calli arabidopsis
20
expression mmcyp1a1
16
stress tolerance
16
ectopic expression
12
melatonin 6-hydroxymelatonin
12
transgenic arabidopsis
12
mmcyp1a1
10
cytochrome p450
8
stress
8

Similar Publications

Identification of osmotic stress resistance mediated by in apple.

Front Plant Sci

December 2024

Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.

KAR (Karrikin), a novel plant growth regulator, can be recognized specifically by plants and can activate resistance responses. MdKAI2 is the natural receptor of KARs in apple. Here, we report the identification of osmotic stress resistance in via the method of genetic transformation.

View Article and Find Full Text PDF

The nuclear and cytoplasmic colocalization of MdGST12 regulated by MdWRKY26 and MdHY5 promotes anthocyanin accumulation by forming homodimers and interact with MdUFGT and MdDFR under light conditions in Malus.

Int J Biol Macromol

December 2024

Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China. Electronic address:

The glutathione S-transferase (GST) gene family participates in the sequestration of anthocyanins into vacuoles. In this study, MdGST12 was identified as a candidate gene during light-induced anthocyanin accumulation. The methylation levels of the MdGST12 promoter exhibited marked differences among apple fruit treated with different light intensities.

View Article and Find Full Text PDF

5-Aminolevulinic acid (ALA), a key biosynthetic precursor of tetrapyrrole compounds, significantly induces anthocyanin accumulation in apple (Malus × domestica Borkh.) as well as other fruits. Although the molecular mechanisms of ALA-induced anthocyanin accumulation have been reported, it remains unknown whether the metabolism of ALA is involved in ALA-induced anthocyanin accumulation.

View Article and Find Full Text PDF

[Functions of , a member of the apple dehydration responsive element binding-A4].

Sheng Wu Gong Cheng Xue Bao

November 2024

National Key Laboratory of Wheat Improvement, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Apple Technology Innovation Center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China.

The dehydration responsive element binding (DREB) transcription factors play an important role in plant growth and development and are extensively involved in plant responses to abiotic stress. The DREB family contains six subfamilies, and TINY belongs to the DREB-A4 subfamily. The gene, , plays a role in regulating plant growth and responses to stress.

View Article and Find Full Text PDF

Expression of the polyphenol oxidase gene MdPPO7 is modulated by MdWRKY3 to regulate browning in sliced apple fruit.

Plant Physiol

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.

Browning is a pervasive problem in horticultural products, substantially diminishing the appearance, flavor, and nutritional value of fruit, including important fruits like apple (Malus × domestica Borkh.). In this study, we compared the physiological characteristics of the browning-resistant line 'Rb-18' with the susceptible variety 'Fuji' and found that the polyphenol oxidase (PPO) enzyme activity and phenolic content of 'Rb-18' were significantly lower than those in 'Fuji'.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!