Objectives: We aimed at identifying the role of transient receptor potential (TRP) channels in pterygium.
Methods: Based on microarray data GSE83627 and GSE2513, differentially expressed genes (DEGs) were screened and 20 hub genes were selected. After gene correlation analysis, 5 TRP-related genes were obtained and functional analyses of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed. Multifactor regulatory network including mRNA, microRNAs (miRNAs) and transcription factors (TFs) was constructed. The 5 gene TRP signature for pterygium was validated by multiple machine learning (ML) programs including support vector classifiers (SVC), random forest (RF), and k-nearest neighbors (KNN). Additionally, we outlined the immune microenvironment and analyzed the candidate drugs. Finally, in vitro experiments were performed using human conjunctival epithelial cells (CjECs) to confirm the bioinformatics results.
Results: Five TRP-related genes (MCOLN1, MCOLN3, TRPM3, TRPM6, and TRPM8) were validated by ML algorithms. Functional analyses revealed the participation of lysosome and TRP-regulated inflammatory pathways. A comprehensive immune infiltration landscape and TFs-miRNAs-mRNAs network was studied, which indicated several therapeutic targets (LEF1 and hsa-miR-455-3p). Through correlation analysis, MCOLN3 was proposed as the most promising immune-related biomarker. In vitro experiments further verified the reliability of our in silico results and demonstrated that the 5 TRP-related genes could influence the proliferation and proinflammatory signaling in conjunctival tissue contributing to the pathogenesis of pterygium.
Conclusions: Our study suggested that TRP channels played an essential role in the pathogenesis of pterygium. The identified pivotal biomarkers (especially MCOLN3) and pathways provide novel directions for future mechanistic and therapeutic studies for pterygium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00011-023-01693-4 | DOI Listing |
Discov Oncol
August 2024
Department of Anorectal Surgery, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China.
Background: Transient receptor potential (TRP) channels are involved in the development and progression of tumors. However, their role in colorectal cancer (CRC) remains unclear, and this study aims to investigate the role of TRP-related genes in CRC.
Methods: Data was obtained from The Cancer Genome Atlas (TCGA) database, and analyses were conducted on the GSE14333 and GSE38832 datasets to assess the prognosis and mark TRP-related genes (TRGs).
CNS Neurosci Ther
July 2024
Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
Aim: This study aimed to explore the mechanisms of transient receptor potential (TRP) channels on the immune microenvironment and develop a TRP-related signature for predicting prognosis, immunotherapy response, and drug sensitivity in gliomas.
Methods: Based on the unsupervised clustering algorithm, we identified novel TRP channel clusters and investigated their biological function, immune microenvironment, and genomic heterogeneity. In vitro and in vivo experiments revealed the association between TRPV2 and macrophages.
Biomarkers
July 2024
Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Background: Osteoarthritis (OA) is a debilitating joint disorder characterized by the progressive degeneration of articular cartilage. Although the role of ion channels in OA pathogenesis is increasingly recognized, diagnostic markers and targeted therapies remain limited.
Methods: In this study, we analyzed the GSE48556 dataset to identify differentially expressed ion channel-related genes (DEGs) in OA and normal controls.
bioRxiv
September 2024
Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
The lateral septum (LS) is a midline, subcortical structure, which regulates social behaviors that are frequently impaired in neurodevelopmental disorders including schizophrenia and autism spectrum disorder. Mouse studies have identified neuronal populations within the LS that express a variety of molecular markers, including vasopressin receptor, oxytocin receptor, and corticotropin releasing hormone receptor, which control specific facets of social behavior. Despite its critical role in regulating social behavior and notable gene expression patterns, comprehensive molecular profiling of the human LS has not been performed.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
April 2024
Department of Thoracic Surgery, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225000, Jiangsu, China.
Background: Tryptophan (Trp) is an essential amino acid. Increasing evidence suggests that tryptophan metabolism plays a complex role in immune escape from Lung adenocarcinoma (LUAD). However, the role of long non-coding RNAs (lncRNAs) in tryptophan metabolism remains to be investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!