Femtosecond Laser Ablation of Quantum Dot Films toward Physical Unclonable Multilevel Fluorescent Anticounterfeiting Labels.

ACS Appl Mater Interfaces

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Published: March 2023

Femtosecond laser ablation (FsLA) technology has been demonstrated to achieve programmable ablation and removal of diverse materials with high precision. Owing to the cross-scale and digital processing characteristics, the FsLA technology has attracted increasing interest. However, the moderate repeatability of FsLA limits its application in the fabrication of advanced micro-/nanostructures due to the nonidentity of each laser pulse and fluctuation of environment. Fortunately, moderate repeatability combined with programmable ablation and high precision perfectly matches with the technical requirements of a physical unclonable fluorescent anticounterfeiting label. Herein, we applied FsLA to quantum dot (QD) films to fabricate a physical unclonable multilevel fluorescent anticounterfeiting label. Visual Jilin University logos, quick response (QR) codes, microlines, and microholes have been achieved for the multilevel anticounterfeiting functions. Of particular significance, the microholes with a macroidentical and microidentifiable geometry guarantee the physical unclonable functions (PUFs). Moreover, the fluorescent anticounterfeiting label is compatible with deep learning algorithms that facilitate authentication to be convenient and accurate. This work shows a fantastic future potential to be a core anticounterfeiting technique for commercial products and drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c16914DOI Listing

Publication Analysis

Top Keywords

physical unclonable
16
fluorescent anticounterfeiting
16
anticounterfeiting label
12
femtosecond laser
8
laser ablation
8
quantum dot
8
dot films
8
unclonable multilevel
8
multilevel fluorescent
8
fsla technology
8

Similar Publications

Chiroptical Synaptic Perovskite Memristor as Reconfigurable Physical Unclonable Functions.

ACS Nano

December 2024

Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.

Physical unclonable functions (PUFs), often referred to as digital fingerprints, are emerging as critical elements in enhancing hardware security and encryption. While significant progress has been made in developing optical and memory-based PUFs, integrating reconfigurability with sensitivity to circularly polarized light (CPL) remains largely unexplored. Here, we present a chiroptical synaptic memristor (CSM) as a reconfigurable PUF, leveraging a two-dimensional organic-inorganic halide chiral perovskite.

View Article and Find Full Text PDF

A Study of the Optimal Logic Combinations of RO-Based PUFs on FPGAs to Maximize Identifiability.

Sensors (Basel)

December 2024

Group of Electronic Design (GDE), Aragón Institute of Engeneering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain.

One of the challenges that wireless sensor networks (WSNs) need to address is achieving security and privacy while keeping low power consumption at sensor nodes. Physically unclonable functions (PUFs) offer a challenge-response functionality that leverages the inherent variations in the manufacturing process of a device, making them an optimal solution for sensor node authentication in WSNs. Thus, identifiability is the fundamental property of any PUF.

View Article and Find Full Text PDF

Decentralized consensus on the state of the Bitcoin blockchain is ensured by proof of work. It relies on digital one-way functions and is associated with an enormous environmental impact. This paper conceptualizes a physical one-way function that aims to transform a digital, electricity-consuming consensus mechanism into a physical process.

View Article and Find Full Text PDF

Artificial fingerprints engraved through block-copolymers as nanoscale physical unclonable functions for authentication and identification.

Nat Commun

December 2024

Advanced Materials Metrology and Life Sciences Division, INRiM (Istituto Nazionale di Ricerca Metrologica), Turin, Italy.

Besides causing financial losses and damage to the brand's reputation, counterfeiting can threaten the health system and global security. In this context, physical unclonable functions (PUFs) have been proposed to overcome limitations of current anti-counterfeiting technologies. Here, we report on artificial fingerprints that can be directly engraved on a wide range of substrates through self-assembled block-copolymer templating as nanoscale PUFs for secure authentication and identification.

View Article and Find Full Text PDF

Physical unclonable function labels have emerged as a promising candidate for achieving unbreakable anticounterfeiting. Despite their significant progress, two challenges for developing practical physical unclonable function systems remain, namely 1) fairly few high-dimensional encoded labels with excellent material properties, and 2) existing authentication methods with poor noise tolerance or inapplicability to unseen labels. Herein, we employ the linear polarization modulation of randomly distributed fluorescent nanodiamonds to demonstrate, for the first time, three-dimensional encoding for diamond-based labels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!