Adenosine triphosphate (ATP) is the primary energy carrier for intracellular metabolic processes. Accurate and rapid detection of ATP has important implications for clinical diagnosis. In this work, we reported a dual-emission ratiometric fluorescent probe Cu NCs-Al@ZIF-90 formed by encapsulating copper nanoclusters (Cu NCs) into zeolitic imidazolate framework-90 (ZIF-90) using a simple one-pot method. Cu NCs exhibited a remarkable fluorescence enhancement in the presence of aluminum ions due to the aggregation-induced emission (AIE) properties. When ATP existed, the Zn nodes in the MOF material acted as selective sites for ATP recognition, resulting in the cleavage of Cu NCs-Al@ZIF-90. As a consequence, two reverse fluorescence changes were observed from released Cu NCs at 620 nm and imidazole-2-carboxaldehyde (2-ICA) at 450 nm, respectively. With the dual-emission ratiometric strategy, efficient and rapid determination of ATP was realized, giving a detection limit down to 0.034 mM in the concentration range of 0.2 mM to 0.625 mM. The convenient synthesis process and the rapid ATP-responsive ability made the proposed Cu NCs-Al@ZIF-90 probe highly promising in clinical and environmental analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2ay01932a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!