A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic predictions from longitudinal CD4 count measures and time to death of HIV/AIDS patients using a Bayesian joint model. | LitMetric

A Bayesian joint modeling approach to dynamic prediction of HIV progression and mortality allows individualized predictions to be made for HIV patients, based on monitoring of their CD4 counts. This study aims to provide predictions of patient-specific trajectories of HIV disease progression and survival. Longitudinal data on 254 HIV/AIDS patients who received ART between 2009 and 2014, and who had at least one CD4 count observed, were employed in a Bayesian joint model of disease progression. Different forms of association structure that relate the longitudinal CD4 biomarker and time to death were assessed; and predictions were averaged over the different models using Bayesian model averaging. The individual follow-up times ranged from 1 to 120 months, with a median of 22 months and IQR 7-39 months. The estimates of the association structure parameters from two of the three models considered indicated that the HIV mortality hazard at any time point is associated with the rate of change in the underlying value of the CD4 count. Model averaging the dynamic predictions resulted in only one of the hypothesized association structures having non-zero weight in almost all time points for each individual, with the exception of twelve patients, for whom other association structures were preferred at a few time points. The predictions were found to be different when we averaged them over models than when we derived them from the highest posterior weight model alone. The model with highest posterior weight for almost all time points for each individual gave an estimate of the association parameter of -0.02 implying that for a unit increase in the CD4 count, the hazard of HIV mortality decreases by a factor (hazard ratio) of 0.98. Functional status and alcohol intake are important contributing factors that affect the mean square root of CD4 measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614071PMC
http://dx.doi.org/10.1016/j.sciaf.2022.e01519DOI Listing

Publication Analysis

Top Keywords

cd4 count
16
bayesian joint
12
time points
12
dynamic predictions
8
longitudinal cd4
8
time death
8
hiv/aids patients
8
joint model
8
disease progression
8
association structure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!