We provide the first systematic characterization of the structural and photoluminescence properties of optically active centers fabricated upon implantation of 30-100 keV Mg ions in synthetic diamond. The structural configurations of Mg-related defects were studied by the electron emission channeling technique for short-lived, radioactive Mg implantations at the CERN-ISOLDE facility, performed both at room temperature and 800 °C, which allowed the identification of a major fraction of Mg atoms (∼30 to 42%) in sites which are compatible with the split-vacancy structure of the MgV complex. A smaller fraction of Mg atoms (∼13 to 17%) was found on substitutional sites. The photoluminescence emission was investigated both at the ensemble and individual defect level in the 5-300 K temperature range, offering a detailed picture of the MgV-related emission properties and revealing the occurrence of previously unreported spectral features. The optical excitability of the MgV center was also studied as a function of the optical excitation wavelength to identify the optimal conditions for photostable and intense emission. The results are discussed in the context of the preliminary experimental data and the theoretical models available in the literature, with appealing perspectives for the utilization of the tunable properties of the MgV center for quantum information processing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855000PMC
http://dx.doi.org/10.1021/acsphotonics.2c01130DOI Listing

Publication Analysis

Top Keywords

fraction atoms
8
mgv center
8
magnesium-vacancy optical
4
optical centers
4
centers diamond
4
diamond provide
4
provide systematic
4
systematic characterization
4
characterization structural
4
structural photoluminescence
4

Similar Publications

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Determination of the Entire Existence Composition Range of CrMnFeCoNi High-Entropy Alloys Using Sintered Diffusion Multiple Method.

Materials (Basel)

January 2025

Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Ibaraki, Japan.

The sintered diffusion multiple (SDM) method, which has been developed in our research group, has been applied to determine the entire composition range of the CrMnFeCoNi high-entropy alloy stereoscopically and continuously over nearly the entire range. The samples were prepared by sintering mixed elemental powders and were annealed at 970 °C or 800 °C. Several hundreds of thousands of points were analyzed at random within the samples for chemical compositions using electron probe microanalysis.

View Article and Find Full Text PDF

Banded iron formations (BIFs), significant iron ore deposits formed approximately 2.3 billion years ago under low-oxygen conditions, have recently gained attention as potential geological sources for evaluating hydrogen (H₂) production. BIFs are characterized by high concentrations of iron oxide (20 to 40 wt.

View Article and Find Full Text PDF

Structure and properties of polysaccharides from tetrasporophytes of Mazzaella parksii.

Int J Biol Macromol

January 2025

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation.

The structure and anti-SARS-CoV-2 activity of sulfated polysaccharides (Mzpt) obtained in high yield (60 %) from tetrasporophytes of Mazzaella parksii were studied. Stepwise fractionation with KCl showed that Mzpt consisted of eight (MzptF1-MzptF8) carrageenans fractions, differing in structure and molecular weight. The yield of non-gelling MzptF8 was 58.

View Article and Find Full Text PDF

Growth of Hexagonal Boron Nitride from Molten Nickel Solutions: A Reactive Molecular Dynamics Study.

ACS Appl Mater Interfaces

January 2025

Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States.

Metal flux methods are excellent for synthesizing high-quality hexagonal boron nitride (hBN) crystals, but the atomic mechanisms of hBN nucleation and growth in these systems are poorly understood and difficult to probe experimentally. Here, we harness classical reactive molecular dynamics (ReaxFF) to unravel the mechanisms of hBN synthesis from liquid nickel solvent over time scales up to 30 ns. These simulations mimic experimental conditions by including relatively large liquid nickel slabs containing dissolved boron and a molecular nitrogen gas phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!