First Report of Ralstonia pseudosolanacearum Causing Wilt Disease in Tomato (Solanum lycopersicum L.) Plants from Mexico.

Plant Dis

Centro de Investigacion en Alimentación y Desarrollo AC, Horticulture, Campo El Diez km 5.5, Culiacan, Sinaloa, Mexico, 80110.

Published: January 2023

Mexico produces more than four million tons of tomato fruits and ranks tenth worldwide. In February 2022, tomato plants in a greenhouse in Culiacan, Sinaloa State, were affected by wilt diseases with an incidence of 20% and irreversible wilt and death of the infected plants (severity up 70%). When cut stems from affected plants, a reddish to brown discoloration of the vascular system was observed and these were disinfected with 1% NaClO for 5 min and then placed in a humid chamber. Characteristic milky-white exudate was obtained. From that exudate, irregular, mucoid, and white colonies with pink centres were obtained on casamino peptone glucose (CPG) plates supplemented with 1% 2,3,5-triphenyl 15 tetrazolium chloride (TZC); these characteristics are typical of the Ralstonia solanacearum species complex (RSSC) (Garcia et al., 2019). Identification of the pathogen was done by PCR using specific primer pairs reported by Paudel et al. (2022), RssC-wF3 (5'-TATATATCCTCGACTTTTCCATGAAGCTGTG-3') - RssCwR3 (5'-CTATATATATACCCCACTTGTTGAGGAACTG-3') and Rpseu-wF5 (5'-TTTTATTTTTTTGGTGTCCGGGCCAAGATAG-3') - Rpseu-wR5 (5'- TTATATTACTCGAACGTGCTGCAAAACCACT-3'), which amplified fragments of 162 and 251 bp for RSSC and Ralstonia pseudosolanacearum, respectively. Additionally, 759 (5'-GTCGCCGTCAACTCACTTTCC-3') - 760 (5'-GTCGCCGTCAGCAATGCGGAATCG-3') (Opina, et al., 1997) and Nmult21:1F (5'-CGTTGATGAGGCGCGCAATTT-3') - Nmult22:RR (5'- TCGCTTGACCCTATAACGAGTA-3') (Fegan and Prior, 2005) were used to generate 282 and 144 bp amplicons for RSSC and phylotype I, respectively. Subsequen to making the specific detection, the representative strain ClnMx was used to generate a sequence for the endoglucanase (egl) gene for separation into sequevars by using the primers Endo-F (5'- ATGCATGCCGCTGGTCGCCGC-3') and Endo-R (5'-GCGTTGCCCGGCACGAACACC-3'), which amplified a fragment of 750 bp (Fegan et al., 1998). The egl sequence (GenBank Access ON542479) showed 100% identity with the well-defined R. pseudosolanacearum sequevar 14, which was isolated from tomato plants from Senegal (UW763, I-14 GenBank Access CP051174) (Steidl et al., 2021), as well as, the strain MAFF 301070 (GenBank Access AB508612) from Japanese tomato. For pathogenicity tests, four 1-month-old tomato plants were infected using an insulin syringe that contained a pure bacterial suspension with approximately 2x108 CFU/mL. For each plant, 20 µL was infiltrated into the axil of the third upper leaf, and for untreated controls, tomato plants were infiltrated with sterile water. All plants were kept at 28°C under greenhouse conditions. Symptoms resembling those observed in the field were observed in inoculated plants six days after inoculation, and the plant pathogen was recovered on TZC medium. To confirm the bacteria identification a PCR using the specific primer pairs mentioned early was carried out. In contrast, water-treated control plants remained healthy. Koch's postulates were carried out twice with similar results. Ralstonia solanacearum species complex (RSSC) causes severe economic losses in many countries of the world because of their capability to infect a wide range of host plants, including potato, tomato, eggplant, tobacco, and, banana, among others. Ralstonia pseudosolanacearum has been reported to cause tomato wilt disease mainly on the Afro-Eurasian continent in areas such as Senegal, Cambodia, and Japan (Klass et al., 2019). To our knowledge, this is the first report of R. pseudosolanacearum causing bacterial wilt diseases in tomato plants from Mexico and because, the control of this bacteria is a challenge by the long survival time in soil, water, and infected plant tissues, the identification of this important pathogen could provide relevant information for developing management strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-08-22-1838-PDNDOI Listing

Publication Analysis

Top Keywords

tomato plants
20
ralstonia pseudosolanacearum
12
plants
12
genbank access
12
tomato
10
pseudosolanacearum causing
8
wilt disease
8
plants mexico
8
wilt diseases
8
ralstonia solanacearum
8

Similar Publications

Tomato (Solanum lycopersicum) is an important crop but frequently experiences saline-alkali stress. Our previous studies have shown that exogenous spermidine (Spd) could significantly enhance the saline-alkali resistance of tomato seedlings, in which a high concentration of Spd and jasmonic acid (JA) exerted important roles. However, the mechanism of Spd and JA accumulation remains unclear.

View Article and Find Full Text PDF

Reducing endogenous CK levels accelerates fruit ripening in tomato by regulating ethylene biosynthesis and signalling pathway. Tomato is a typical climacteric fruit and is recognized as one of the most important horticultural crops globally. The ripening of tomato fruits is a complex process, highly regulated by phytohormones.

View Article and Find Full Text PDF

An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening.

Plant Cell

December 2024

Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.

A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.

View Article and Find Full Text PDF

Suppression of TGA2-Mediated Salicylic Acid Defence by Tomato Yellow Leaf Curl Virus C2 via Disruption of TCP7-Like Transcription Factor Activity in Tobacco.

Plant Cell Environ

January 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China.

Tomato yellow leaf curl virus (TYLCV) is a significant threat to tomato cultivation globally, transmitted exclusively by the whitefly Bemisia tabaci. While previous research suggests that the TYLCV C2 protein plays a role in fostering mutualistic interactions between the virus and its insect vectors, the specific mechanisms remain unclear. In this study, we show that the C2 protein interferes with the salicylic acid (SA) defence pathway by disrupting TCP7-like transcription factor-mediated regulation of TGA2 expression.

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA) functions as an inhibitory neurotransmitter which blocks the impulses between nerve cells in the brain. Due to the increasing awareness about the health promoting benefits associated with GABA, it is also artificially synthesized and consumed as a nutritional supplement by people in some regions of the world. Though among the fresh vegetables, tomato fruits do contain a comparatively higher amount of GABA (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!