Introduction: Sexually transmitted infections (STIs) are the major public health problem globally, affecting millions of people every day. The burden is high in the Sub-Saharan region, including Ethiopia. Besides, there is little evidence on the distribution of STIs across Ethiopian regions. Hence, having a better understanding of the infections is of great importance to lessen their burden on society. Therefore, this article aimed to assess predictors of STIs using machine learning techniques and their geographic distribution across Ethiopian regions. Assessing the predictors of STIs and their spatial distribution could help policymakers to understand the problems better and design interventions accordingly.
Methods: A community-based cross-sectional study was conducted from January 18, 2016, to June 27, 2016, using the 2016 Ethiopian Demography and Health Survey (EDHS) dataset. We applied spatial autocorrelation analysis using Global Moran's I statistics to detect latent STI clusters. Spatial scan statics was done to identify local significant clusters based on the Bernoulli model using the SaTScan™ for spatial distribution and Supervised machine learning models such as C5.0 Decision tree, Random Forest, Support Vector Machine, Naïve Bayes, and Logistic regression were applied to the 2016 EDHS dataset for STI prediction and their performances were analyzed. Association rules were done using an unsupervised machine learning algorithm.
Results: The spatial distribution of STI in Ethiopia was clustered across the country with a global Moran's index = 0.06 and p value = 0.04. The Random Forest algorithm was best for STI prediction with 69.48% balanced accuracy and 68.50% area under the curve. The random forest model showed that region, wealth, age category, educational level, age at first sex, working status, marital status, media access, alcohol drinking, chat chewing, and sex of the respondent were the top 11 predictors of STI in Ethiopia.
Conclusion: Applying random forest machine learning algorithm for STI prediction in Ethiopia is the proposed model to identify the predictors of STIs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9872341 | PMC |
http://dx.doi.org/10.1186/s12879-023-07987-6 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Department of Physics, Faculty of Sciences, Arak University, Arak, Iran.
Objective: Addressing the rising cancer rates through timely diagnosis and treatment is crucial. Additionally, cancer survivors need to understand the potential risk of developing secondary cancer (SC), which can be influenced by several factors including treatment modalities, lifestyle choices, and habits such as smoking and alcohol consumption. This study aims to establish a novel relationship using linear regression models between dose and the risk of SC, comparing different prediction methods for lung, colon, and breast cancer.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Department of Nuclear Medicine, Busan Paik Hospital, University of Inje College of Medicine, Busan, Republic of Korea.
Objective: This study aimed to develop a simple machine-learning model incorporating lymph node metastasis status with F-18 Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and clinical information for predicting regional lymph node metastasis in patients with colon cancer.
Methods: This retrospective study included 193 patients diagnosed with colon cancer between January 2014 and December 2017. All patients underwent F-18 FDG PET/CT and blood test before surgery.
Geroscience
January 2025
State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
Biological brain age is a brain-predicted age using machine learning to indicate brain health and its associated conditions. The presence of an older predicted brain age relative to the actual chronological age is indicative of accelerated aging processes. Consequently, the disparity between the brain's chronological age and its predicted age (brain-age gap) and the factors influencing this disparity provide critical insights into cerebral health dynamics during aging.
View Article and Find Full Text PDFBioDrugs
January 2025
Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
Background: With the expiration of patents for multiple biotherapeutics, biosimilars are gaining traction globally as cost-effective alternatives to the original products. Glycosylation, a critical quality attribute, makes glycosimilarity assessment pivotal for biosimilar development. Given the complexity of glycoanalytical profiles, assessing glycosimilarity is nontrivial.
View Article and Find Full Text PDFPurpose: This brief report aims to summarize and discuss the methodologies of eXplainable Artificial Intelligence (XAI) and their potential applications in surgery.
Methods: We briefly introduce explainability methods, including global and individual explanatory features, methods for imaging data and time series, as well as similarity classification, and unraveled rules and laws.
Results: Given the increasing interest in artificial intelligence within the surgical field, we emphasize the critical importance of transparency and interpretability in the outputs of applied models.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!