Organisms have evolved a circadian clock for the precise timing of their biological processes. Studies primarily on model dicots have shown the complexity of the inner timekeeper responsible for maintaining circadian oscillation in plants and have highlighted that circadian regulation is more than relevant to a wide range of biological processes, especially organ development and timing of flowering. Contribution of the circadian clock to overall plant fitness and yield has also long been known. Nevertheless, the organ- and species-specific functions of the circadian clock and its relation to stress adaptation have only recently been identified. Here we report transcriptional changes of core clock genes of the model monocot Brachypodium distachyon under three different light regimes (18:6 light:dark, 24:0 light and 0:24 dark) in response to mild drought stress in roots and green plant parts. Comparative monitoring of core clock gene expression in roots and green plant parts has shown that both phase and amplitude of expression in the roots of Brachypodium plants differ markedly from those in the green plant parts, even under well-watered conditions. Moreover, circadian clock genes responded to water depletion differently in root and shoot. These results suggest an organ-specific form and functions of the circadian clock in Brachypodium roots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870971 | PMC |
http://dx.doi.org/10.1038/s41598-022-27287-4 | DOI Listing |
Sci Rep
December 2024
Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
A circadian clock is reconstituted in vitro by incubating three proteins, KaiA, KaiB, and KaiC from the non-nitrogen-fixing cyanobacterium Synechococcus elongatus PCC 7942 in the presence of ATP. Leptolyngbya boryana is a filamentous cyanobacterium that grows diazotrophically under microoxic conditions. Among the aforementioned proteins, KaiC is the main clock oscillator belonging to the RecA ATPase superfamily.
View Article and Find Full Text PDFSci Rep
December 2024
Departments of Animal and Food Sciences, Biological Sciences, Medical and Molecular Sciences, and Microbiology Graduate Program, University of Delaware, Newark, DE, USA.
The transcriptional regulation of gene expression in the latter stages of follicular development in laying hen ovarian follicles is not well understood. Although differentially expressed genes (DEGs) have been identified in pre-recruitment and pre-ovulatory stages, the master regulators driving these DEGs remain unknown. This study addresses this knowledge gap by utilizing Master Regulator Analysis (MRA) combined with the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) for the first time in laying hen research to identify master regulators that are controlling DEGs in pre-recruitment and pre-ovulatory phases.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital & College, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China. Electronic address:
Background: Light at night (LAN) has become a global concern. However, little is known about the effects of bedroom LAN exposure on glucose metabolism markers. We aimed to explore the association between intensity and duration of bedroom LAN exposure with glucose metabolism markers, and the role of circadian-dependent meal timing in these associations.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA.
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!