A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adaptation and External Validation of Pathogenic Urine Culture Prediction in Primary Care Using Machine Learning. | LitMetric

Background: Urinary tract infection (UTI) symptoms are common in primary care, but antibiotics are appropriate only when an infection is present. Urine culture is the reference standard test for infection, but results take >1 day. A machine learning predictor of urine cultures showed high accuracy for an emergency department (ED) population but required urine microscopy features that are not routinely available in primary care (the NeedMicro classifier).

Methods: We redesigned a classifier (NoMicro) that does not depend on urine microscopy and retrospectively validated it internally (ED data set) and externally (on a newly curated primary care [PC] data set) using a multicenter approach including 80,387 (ED) and 472 (PC) adults. We constructed machine learning models using extreme gradient boosting (XGBoost), artificial neural networks, and random forests (RFs). The primary outcome was pathogenic urine culture growing ≥100,000 colony forming units. Predictor variables included age; gender; dipstick urinalysis nitrites, leukocytes, clarity, glucose, protein, and blood; dysuria; abdominal pain; and history of UTI.

Results: Removal of microscopy features did not severely compromise performance under internal validation: NoMicro/XGBoost receiver operating characteristic area under the curve (ROC-AUC) 0.86 (95% CI, 0.86-0.87) vs NeedMicro 0.88 (95% CI, 0.87-0.88). Excellent performance in external (PC) validation was also observed: NoMicro/RF ROC-AUC 0.85 (95% CI, 0.81-0.89). Retrospective simulation suggested that NoMicro/RF can be used to safely withhold antibiotics for low-risk patients, thereby avoiding antibiotic overuse.

Conclusions: The NoMicro classifier appears appropriate for PC. Prospective trials to adjudicate the balance of benefits and harms of using the NoMicro classifier are appropriate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870630PMC
http://dx.doi.org/10.1370/afm.2902DOI Listing

Publication Analysis

Top Keywords

primary care
16
urine culture
12
machine learning
12
external validation
8
pathogenic urine
8
urine microscopy
8
microscopy features
8
data set
8
nomicro classifier
8
urine
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!