A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioaugmentation removal and microbiome analysis of the synthetic estrogen 17α-ethynylestradiol from hostile conditions and environmental samples by Pseudomonas citronellolis SJTE-3. | LitMetric

Bioaugmentation removal and microbiome analysis of the synthetic estrogen 17α-ethynylestradiol from hostile conditions and environmental samples by Pseudomonas citronellolis SJTE-3.

Chemosphere

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address:

Published: March 2023

AI Article Synopsis

  • Synthetic estrogens like 17α-ethynylestradiol (EE2) are harmful environmental pollutants, and the strain Pseudomonas citronellolis SJTE-3 shows promise in degrading them effectively.
  • Under various harsh conditions, including heavy metals and different natural environments, strain SJTE-3 demonstrates strong tolerance and efficient EE2 degradation, with notable results in lake water, soil, and pig manure.
  • The use of strain SJTE-3 for bioaugmentation shows potential for over 90% EE2 removal in just two days, while also positively influencing certain bacterial communities without major disruption.

Article Abstract

Synthetic estrogens are emerging environmental contaminants with great estrogenic activities and stable structures that are widespread in various ecological systems and significantly threaten the health of organisms. Pseudomonas citronellolis SJTE-3 is reported to degrade the synthetic estrogen 17α-ethynylestradiol (EE2) efficiently in laboratory conditions. In this work, the environmental adaptability, the EE2-degrading properties, and the ecological effects of P. citronellolis SJTE-3 under different hostile conditions (heavy metals and surfactants) and various natural environment samples (solid soil, lake water, and pig manure) were studied. Strain SJTE-3 can tolerate high concentrations of Zn and Cr, but is relatively sensitive to Cu. Tween 80 of low concentration can significantly promote EE2 degradation by strain SJTE-3, different from the repressing effect of Triton X-100. High concentration of Tween 80 prolonged the lagging phase of EE2-degrading process, while the final EE2 removal efficiency was improved. More importantly, strain SJTE-3 can grow normally and degrade estrogen stably in various environmental samples. Inoculation of strain SJTE-3 removed the intrinsic synthetic and natural estrogens (EE2 and estrone) in lake water samples in 4 days, and eliminated over 90% of the amended 1 mg/L EE2 in 2 days. Bioaugmentation of strain SJTE-3 in EE2-supplied solid soil and pig manure samples achieved a removal rate of over 55% and 70% of 1 mg/kg EE2 within 2 weeks. Notably, the bioaugmentation of extrinsic strain SJTE-3 had a slight influence on indigenous bacterial community in pig manure samples, and its relative abundance decreased significantly after EE2 removal. Amendment of EE2 or strain SJTE-3 in manure samples enhanced the abundance of Proteobacteria and Actinobacteria, implying their potential in utilizing EE2 or its metabolites. These findings not only shed a light on the environment adaptability and degradation efficiency of strain SJTE-3, but also provide insights for bioremediation application in complex and synthetic estrogen polluted environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.137893DOI Listing

Publication Analysis

Top Keywords

strain sjte-3
32
synthetic estrogen
12
citronellolis sjte-3
12
pig manure
12
manure samples
12
sjte-3
11
ee2
9
estrogen 17α-ethynylestradiol
8
hostile conditions
8
environmental samples
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!