Snake venom, a potential treatment for melanoma. A systematic review.

Int J Biol Macromol

Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul 96203-900, Brazil.

Published: March 2023

Despite advances in treating patients with melanoma, there are still many treatment challenges to overcome. Studies with snake venom-derived proteins/peptides describe their binding potential, and inhibition of some proliferative mechanisms in melanoma. The combined use of these compounds with current therapies could be the strategic gap that will help us discover more effective treatments for melanoma. The present study aimed to carry out a systematic review identifying snake venom proteins and peptides described in the literature with antitumor, antimetastatic, or antiangiogenic effects on melanoma and determine the mechanisms of action that lead to these anti-tumor effects. Snake venoms contain proteins and peptides which are antiaggregant, antimetastatic, and antiangiogenic. The in vivo results are encouraging, considering the reduction of metastases and tumor size after treatment. In addition to these results, it was reported that these venom compounds could act in combination with chemotherapeutics (Acurhagin-C; Macrovipecetin), sensitizing and preparing tumor cells for treatment. There is a consensus that snake venom is a promising strategy for the improvement of antimelanoma therapies, but it has been little explored in the current context, combined with inhibitors, immunotherapy or tumor microenvironment, for example. We suggest Lebein as a candidate for combination therapy with BRAF inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123367DOI Listing

Publication Analysis

Top Keywords

snake venom
12
systematic review
8
proteins peptides
8
antimetastatic antiangiogenic
8
snake
5
melanoma
5
venom potential
4
treatment
4
potential treatment
4
treatment melanoma
4

Similar Publications

Elucidating on the Quaternary Structure of Viper Venom Phospholipase A Enzymes in Aqueous Solution.

Biochimie

January 2025

LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. Electronic address:

This study focuses on the quaternary structure of the viper-secreted phospholipase A (PLA), a central toxin in viper envenomation. PLA enzymes catalyse the hydrolysis of the sn-2 ester bond of membrane phospholipids. Small-molecule inhibitors that act as snakebite antidotes, such as varespladib, are currently in clinical trials.

View Article and Find Full Text PDF

Snake venom galactoside-binding lectin from Bothrops jararacussu: Special role in leukocytes activation and function.

Int J Biol Macromol

January 2025

Fundação de Medicina Tropical - Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade Nilton Lins, Manaus, AM, Brazil. Electronic address:

Article Synopsis
  • SVgalLs are toxins from Bothrops snake venoms that bind to galactose-containing carbohydrates in a calcium-dependent way.
  • BjcuL, a key C-type lectin from Bothrops jararacussu venom, has been extensively studied for its role in inflammation by activating immune cell functions.
  • The review discusses the current knowledge on snake venom lectins' effects in pathophysiology and outlines future research directions, including advanced technologies for discovering new therapeutic targets.
View Article and Find Full Text PDF

Envenomation accidents are usually diagnosed at the hospital through signs and symptoms assessment such as short breath, dizziness and vomiting, numbness, swilling, bruising, or bleeding around the affected site. However, this traditional method provides inaccurate diagnosis given the interface between snakebites and scorpion stings symptoms. Therefore, early determination of bites/stings source would help healthcare professionals select the suitable treatment for patients, thus improving envenomation management.

View Article and Find Full Text PDF

Objective: The expansion of human activities in northern Colombia has increased human-snake encounters, particularly with venomous . Given the limited knowledge of systemic envenomation effects and previous studies focusing only on early murine symptoms, this investigation aimed to describe the time-course physiopathology of envenomation following intramuscular injection .

Methods: Venom was inoculated in the gastrocnemius muscles of Swiss Webster mice, and blood, urine, and tissue samples were taken at different times to evaluate lethality and biochemical markers of renal function and oxidative stress.

View Article and Find Full Text PDF

Metabolomics and proteomics: synergistic tools for understanding snake venom inhibition.

Arch Toxicol

January 2025

Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.

Article Synopsis
  • Snake envenomation is a major global health issue, particularly in rural areas of tropical and subtropical regions, highlighting the need for better therapeutic approaches.
  • Traditional antivenoms have limitations, but advancements in omics technologies like metabolomics and proteomics are improving our understanding of venom and potential treatments.
  • By exploring metabolic changes and identifying venom proteins, researchers aim to develop novel inhibitors and next-generation antivenoms, ultimately leading to more effective treatments for snake bites.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!