Ether lipids from archaeas in nano-drug delivery and vaccination.

Int J Pharm

Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.

Published: March 2023

Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.122632DOI Listing

Publication Analysis

Top Keywords

ether lipids
8
eukaryotes bacteria
8
lipids archaeas
4
archaeas nano-drug
4
nano-drug delivery
4
delivery vaccination
4
vaccination archaea
4
archaea microorganisms
4
microorganisms closely
4
closely eukaryotes
4

Similar Publications

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

Species of the genus are known for their pharmacological properties and essential oils, the chemical composition of which remains inadequately studied. In this work, GC-MS analysis, synthesis, and spectral techniques (UV, IR, MS, and NMR) were employed to identify 83 constituents in the essential oil from roots, which accounted for 98.1% of the total GC-peak area.

View Article and Find Full Text PDF

The use of escape protein, which is absorbed in the small intestine, can improve the production of ruminant animals because it meets their protein requirements better. This study hypothesized that wax lipid matrices are effective encapsulants for escape lysine in ruminants and tested tannin extract as an adjuvant. Forty intact male Santa Ines × Dorper sheep (~4 months old, BW 23 ± 1.

View Article and Find Full Text PDF

Intramuscular fat (IMF) is an important indicator for evaluating meat quality. Transcriptome sequencing (RNA-seq) is widely used for the study of IMF deposition. Machine learning (ML) is a new big data fitting method that can effectively fit complex data, accurately identify samples and genes, and it plays an important role in omics research.

View Article and Find Full Text PDF

Oxidative stress (OS) refers to the disruption in the balance between free radical generation and antioxidant defenses, leading to potential tissue damage. Reactive oxygen species (ROS) can interact with biological components, triggering processes like protein oxidation, lipid peroxidation, or DNA damage, resulting in the generation of several volatile organic compounds (VOCs). Recently, VOCs provided new insight into cellular metabolism and can serve as potential biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!