Intravenous surfactant protein D inhibits lipopolysaccharide-induced systemic inflammation.

Ann Anat

The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. Electronic address:

Published: April 2023

Background: Surfactant protein D (SP-D) is an innate host defense protein that clears infectious pathogens from the lung and regulates pulmonary host defense cells. SP-D is also detected in lower concentrations in plasma and many other non-pulmonary tissues. Plasma levels of SP-D increase during infection and other proinflammatory states; however, the source and functions of SP-D in the systemic circulation are largely unknown. We hypothesized that systemic SP-D may clear infectious pathogens and regulate host defense cells in extrapulmonary systems.

Methods: To determine if SP-D inhibited inflammation induced by systemic lipopolysaccharide (LPS), E.coli LPS was administered to mice via tail vein injection with and without SP-D and the inflammatory response was measured.

Results: Systemic SP-D has a circulating half-life of 6 h. Systemic IL-6 levels in mice lacking the SP-D gene were similar to wild type mice at baseline but were significantly higher than wild type mice following LPS treatment (38,000 vs 29,900 ng/ml for 20 mg/kg LPS and 100,700 vs 73,700 ng/ml for 40 mg/kg LPS). In addition, treating wild type mice with purified intravenous SP-D inhibited LPS induced secretion of IL-6 and TNFα in a concentration dependent manner. Inhibition of LPS induced inflammation by SP-D correlated with SP-D LPS binding suggesting SP-D mediated inhibition of systemic LPS requires direct SP-D LPS interactions.

Conclusions: Taken together, the above results suggest that circulating SP-D decreases systemic inflammation and raise the possibility that a physiological purpose of increasing systemic SP-D levels during infection is to scavenge systemic infectious pathogens and limit inflammation-induced tissue injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992088PMC
http://dx.doi.org/10.1016/j.aanat.2023.152048DOI Listing

Publication Analysis

Top Keywords

sp-d
16
host defense
12
infectious pathogens
12
systemic sp-d
12
wild type
12
type mice
12
systemic
10
lps
10
surfactant protein
8
systemic inflammation
8

Similar Publications

Restoring natural killer cell activity in lung injury with 1,25-hydroxy vitamin D: a promising therapeutic approach.

Front Immunol

January 2025

Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.

Background And Aim: NK cells and NK-cell-derived cytokines were shown to regulate neutrophil activation in acute lung injury (ALI). However, the extent to which ALI regulates lung tissue-resident NK (trNK) activity and their molecular phenotypic alterations are not well defined. We aimed to assess the impact of 1,25-hydroxy-vitamin-D3 [1,125(OH)D] on ALI clinical outcome in a mouse model and effects on lung trNK cell activations.

View Article and Find Full Text PDF

Since its outbreak, the novel coronavirus (COVID-19) has significantly impacted the pediatric population. Pulmonary surfactant dysfunction has been linked to other respiratory diseases in children and COVID-19 in adults, but its role in COVID-19 severity remains unclear. We hypothesized that elevated surfactant protein (SP) levels and single nucleotide polymorphisms (SNPs) of SP genes are associated with severe COVID-19 in children.

View Article and Find Full Text PDF

Objectives: To investigate the clinical sub-phenotype (SP) of pediatric acute kidney injury (AKI) and their association with clinical outcomes.

Methods: General status and initial values of laboratory markers within 24 hours after admission to the pediatric intensive care unit (PICU) were recorded for children with AKI in the derivation cohort (=650) and the validation cohort (=177). In the derivation cohort, a least absolute shrinkage and selection operator (LASSO) regression analysis was used to identify death-related indicators, and a two-step cluster analysis was employed to obtain the clinical SP of AKI.

View Article and Find Full Text PDF

Inhaled ozone induces distinct alterations in pulmonary function in models of acute and episodic exposure in female mice.

Toxicol Sci

January 2025

Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854.

Ozone is an urban air pollutant, known to cause lung injury and altered function. Using established models of acute (0.8 ppm, 3 h) and episodic (1.

View Article and Find Full Text PDF

Sensitization to food allergens is associated with more severe wheezing in children.

Allergol Select

December 2024

Manisa Celal Bayar University, School of Medicine, Department of Pediatric Allergy and Pulmonology, Manisa, Turkey.

Aims: We investigated sensitization to food allergens as a prognostic factor for wheezing in children with recurrent wheezing and compared serum club cell 16 (CC16) and surfactant protein D (SP-D) among these children with and without sensitization to food allergens.

Materials And Methods: Children with recurrent wheezing were enrolled in this prospective cohort study. Specific IgE to five common food allergens (Fx5) was assessed at baseline, and children were followed-up for 1 year for new-onset wheezing episodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!