A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unveiling the Rolling to Kayak Transition in Propelling Nanorods with Cargo Trapping and Pumping. | LitMetric

Unveiling the Rolling to Kayak Transition in Propelling Nanorods with Cargo Trapping and Pumping.

Nano Lett

Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028Barcelona, Spain.

Published: February 2023

Magnetic nanorods driven by rotating fields in water can be rapidly steered along any direction while generating strong and localized hydrodynamic flow fields. Here we show that, when raising the frequency of the rotating field, these nanopropellers undergo a dynamic transition from a rolling to a kayak-like motion due to the increase in viscous drag and acquire a finite inclination angle with respect to the plane perpendicular to the bottom surface. We explain these experimental observations with a theoretical model which considers the nanorod as a pair of ferromagnetic particles hydrodynamically interacting with a close stationary surface. Further, we quantify how efficiently microscopic cargoes can be trapped or expelled from the moving nanorod and use numerical simulations to unveil the generated hydrodynamic flow field. These propulsion regimes can be implemented in microfluidic devices to perform precise operations based on the selective sorting of microscopic cargoes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c03897DOI Listing

Publication Analysis

Top Keywords

hydrodynamic flow
8
microscopic cargoes
8
unveiling rolling
4
rolling kayak
4
kayak transition
4
transition propelling
4
propelling nanorods
4
nanorods cargo
4
cargo trapping
4
trapping pumping
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!