Extracellular electron transfer and the conductivity in microbial aggregates during biochemical wastewater treatment: A bottom-up analysis of existing knowledge.

Water Res

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China. Electronic address:

Published: March 2023

Microbial extracellular electron transfer (EET) plays a crucial role in bioenergy production and resource recovery from wastewater. Interdisciplinary efforts have been made to unveil EET processes at various spatial scales, from nanowires to microbial aggregates. Electrical conductivity has been frequently measured as an indicator of EET efficiency. In this review, the conductivity of nanowires, biofilms, and granular sludge was summarized, and factors including subjects, measurement methods, and conducting conditions that affect the conductivity difference were discussed in detail. The high conductivity of nanowires does not necessarily result in efficient EET in microbial aggregates due to the existence of non-conductive substances and contact resistance. Improving the conductivity measurement of microbial aggregates is important because it enables the calculation of an EET flux from conductivity and a comparison of the flux with mass transfer coefficients. This review provides new insight into the significance, characterization, and optimization of EET in microbial aggregates during a wastewater treatment process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.119630DOI Listing

Publication Analysis

Top Keywords

microbial aggregates
20
extracellular electron
8
electron transfer
8
wastewater treatment
8
conductivity nanowires
8
eet microbial
8
conductivity
7
microbial
6
eet
6
aggregates
5

Similar Publications

a major human fungal pathogen, can form biofilms on a variety of inert and biological surfaces. biofilms allow for immune evasion, are highly resistant to antifungal therapies, and represent a significant complication for a wide variety of immunocompromised patients in clinical settings. While transcriptional regulators and global transcriptional profiles of biofilm formation have been well-characterized, much less is known about translational regulation of this important virulence property.

View Article and Find Full Text PDF

A point mutation in a like gene in enhances the anticorrosion activity.

Appl Environ Microbiol

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.

The protection of steel based on microbial biomineralization has emerged as a novel and eco-friendly strategy for corrosion control. However, the molecular basis of the biomineralization process in mineralization bacteria remains largely unexplored. We previously reported that EPS+ strain provides protection against steel corrosion by forming a hybrid biomineralization film.

View Article and Find Full Text PDF

The aberrant aggregation of the human islet amyloid polypeptide (hIAPP) is a hallmark of type II diabetes. LL37, the only cathelicidin host-defense peptide in humans, plays essential roles in antimicrobial and immunomodulatory activities. Mounting evidence indicates that LL37 can inhibit the amyloid aggregation of hIAPP, suggesting possible interplays between infections and amyloid diseases while the mechanism remains unclear.

View Article and Find Full Text PDF

Recalcitrant bacterial infections can be caused by various types of dormant bacteria, including persisters and viable but nonculturable (VBNC) cells. Despite their clinical importance, we know fairly little about bacterial dormancy development and recovery. Previously, we established a correlation between protein aggregation and dormancy in Escherichia coli.

View Article and Find Full Text PDF

Structure and assembly mechanisms of the microbial community on an artificial reef surface, Fangchenggang, China.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.

The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!