The majority of pathogenic mutations in the neurofibromatosis type I () gene reduce total neurofibromin protein expression through premature truncation or microdeletion, but it is less well understood how loss-of-function missense variants drive NF1 disease. We have found that patient variants in codons 844 to 848, which correlate with a severe phenotype, cause protein instability and exert an additional dominant-negative action whereby wild-type neurofibromin also becomes destabilized through protein dimerization. We have used our neurofibromin cryogenic electron microscopy structure to predict and validate other patient variants that act through a similar mechanism. This provides a foundation for understanding genotype-phenotype correlations and has important implications for patient counseling, disease management, and therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945959PMC
http://dx.doi.org/10.1073/pnas.2208960120DOI Listing

Publication Analysis

Top Keywords

patient variants
8
destabilizing nf1
4
variants
4
nf1 variants
4
variants dominant
4
dominant negative
4
negative manner
4
neurofibromin
4
manner neurofibromin
4
neurofibromin dimerization
4

Similar Publications

Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) can be differentiated from invasive encapsulated follicular variant of papillary thyroid carcinoma (eFV-PTC) by the presence of a tumor capsule or blood vessel invasion in histological examination. The objective of this study was to investigate whether it is possible to distinguish between NIFTP and invasive eFV-PTC before surgery. Patients diagnosed with NIFTP and invasive eFV-PTC from 2017 to 2023 were analyzed for biochemical, ultrasonographic, and cytological features.

View Article and Find Full Text PDF

Clinical and imaging spectrum of non-congenital dominant ACTN2 myopathy.

J Neurol

January 2025

Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.

Background: Alpha-actinin-2, a protein with high expression in cardiac and skeletal muscle, is located in the Z-disc and plays a key role in sarcomere stability. Mutations in ACTN2 have been associated with both hypertrophic and dilated cardiomyopathy and, more recently, with skeletal myopathy.

Methods: Genetic, clinical, and muscle imaging data were collected from 37 patients with an autosomal dominant ACTN2 myopathy belonging to 11 families from Spain and Belgium.

View Article and Find Full Text PDF

Cardiac computed tomography angiography (CTA) is a valuable tool in the assessment of congenital and acquired cardiac disease in children. The goal of cardiac CTA is to produce images that are free of motion and provide sufficient characterization of the anatomy in question. Given the complexity of pediatric patient characteristics, including patient size, heart rate, breath-holding capability, and variant anatomy, cardiac CTA technique must be individualized to the patient as well as the indication to answer the clinical question while also minimizing radiation exposure.

View Article and Find Full Text PDF

Interleukin 6 (IL6) is an inflammatory biomarker linked to central and peripheral nervous system diseases. This study combined bioinformatics and statistical meta-analysis to explore potential associations between IL6 gene variants (rs1800795, rs1800796, and rs1800797) and neurological disorders (NDs) and brain cancer. The meta-analysis was conducted on substantial case-control datasets and revealed a significant correlation between IL6 SNPs (rs1800795 and rs1800796) with overall NDs (p-value < 0.

View Article and Find Full Text PDF

Neuronal ceroid lipofuscinosis 11 (CLN11) presenting with early-onset cone-rod dystrophy and learning difficulties.

Neurogenetics

January 2025

Department of Neuroscience and Behavioural Sciences, School of Medicine at Ribeirão Preto, University of São Paulo, Bandeirantes Av. 3900, Ribeirão Preto, São Paulo, 14040-900, Brazil.

Neuronal Ceroid Lipofuscinosis 11 (CLN11) is an ultra-rare subtype of adult-onset Neuronal Ceroid Lipofuscinosis. Its phenotype is variable and not fully known. A 21-year-old man was evaluated in our neurogenetic outpatient clinic for early onset complex phenotype, including learning difficulties, cerebellar ataxia, cone-rod dystrophy, epilepsy, and dystonia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!