Variants in KLK11, affecting signal peptide cleavage of kallikrein-related peptidase 11, cause an autosomal-dominant cornification disorder.

Br J Dermatol

Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China.

Published: January 2023

Background: Mendelian disorders of cornification (MeDOC) are a group of heterogeneous genodermatoses with different genetic bases. The pathogenesis of a substantial group of MeDOC remains to be elucidated.

Objectives: To identify a new causative gene and the pathogenesis of a previously undescribed autosomal-dominant cornification disorder.

Methods: Whole-exome sequencing was performed in three families with the novel cornification disorder to identify the disease-causing variants. As the variants were located around the signal peptide (SP) cleavage site of a kallikrein-related peptidase, SP cleavage, subcellular localization and extracellular secretion of the variants were evaluated in eukaryotic overexpression systems by Western blotting or immunocytochemistry. Then the trypsin-like and chymotrypsin-like proteolytic activity of the peptidase and degradation of its catalytic substrate were assayed using the patients' stratum corneum (SC) samples. The morphology of the lamellar bodies and corneodesmosomes (CDs) in the patients' SC was ultrastructurally examined. A mouse model harbouring the equivalent variant was constructed and evaluated histologically.

Results: We identified two heterozygous variants affecting Gly50 in kallikrein-related peptidase (KLK)11 in a familial case and two sporadic cases with the new disorder, which is characterized by early-onset ichthyosiform erythroderma or erythrokeratoderma. KLK11 belongs to the family of kallikrein-related peptidases participating in skin desquamation by decomposing CDs, a process essential for shedding of the SC. In vitro experiments demonstrated that the variants perturbed the SP cleavage of KLK11, leading to subcellular mislocalization and impaired extracellular secretion of the KLK11 Gly50Glu variant. Both trypsin-like and chymotrypsin-like proteolytic activities were significantly decreased in the patients' SC samples. Reduced proteolysis of desmoglein 1 and delayed degeneration of CDs were detected in patients' SC, indicating delayed skin desquamation. Consistently, the patients showed a thickened, dense SC, indicating abnormal skin desquamation. Mice harbouring the homozygous c.131G>A (p.Gly44Glu) Klk11 variant, which is equivalent to KLK11 c.149G>A (p.Gly50Glu) in humans, exhibited hyperkeratosis and abnormal desquamation, partially recapitulating the phenotype.

Conclusions: We provide evidence that variants at Gly50 affecting the SP cleavage of KLK11 cause a new autosomal-dominant cornification disorder with abnormal desquamation. Our findings highlight the essential role of KLKs in maintaining homeostasis of skin keratinization and desquamation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bjd/ljac029DOI Listing

Publication Analysis

Top Keywords

kallikrein-related peptidase
12
autosomal-dominant cornification
12
cornification disorder
12
skin desquamation
12
signal peptide
8
peptide cleavage
8
extracellular secretion
8
trypsin-like chymotrypsin-like
8
chymotrypsin-like proteolytic
8
variants gly50
8

Similar Publications

Analysis of kallikrein-related peptidase 7 (KLK7) autolysis reveals novel protease and cytokine substrates.

Biol Chem

December 2024

Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, 94080, USA.

Kallikrein-related peptidase 7 (KLK7) is one of 15 members of the tissue kallikrein family and is primarily expressed in the skin epidermis. The activity of KLK7 is tightly regulated by multiple stages of maturation and reversible inhibition, similar to several other extracellular proteases. In this work, we used protease-specific inhibitors and active site variants to show that KLK7 undergoes autolysis at two separate sites in the 170 and 99 loops (chymotrypsinogen numbering), resulting in a loss of enzymatic activity.

View Article and Find Full Text PDF

The potential immunotherapy effect of Ginkgolide B thwarts oral squamous cell carcinoma progression by targeting the SREBP1/KLK8/CCL22 axis.

Phytomedicine

November 2024

Department of Molecular Biology and Cell Research, Chang Bing Show-Chwan Memorial Hospital, Changhua, Taiwan; Department of Hematology‑Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan.

Background: Oral cancer is a malignant tumor of the oral cavity, with regulatory T cell (Treg) infiltration associated with poor prognosis. Ginkgolide B (GB) has demonstrated effects on lipid metabolism; however, its potential immunotherapeutic effects on oral cancer have not been elaborated.

Purpose: This study aimed to explore the immunotherapeutic effects of Ginkgolide B (GB) in oral cancer.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to evaluate how the serine protease KLK6 affects colorectal cancer development in mice with a mutant tumor suppressor gene, finding that KLK6 expression increases significantly in tumors compared to normal tissue.
  • - Techniques like immunohistochemistry confirmed KLK6 presence, and genetically altered mice lacking KLK6 showed smaller tumor sizes and fewer adenomas, indicating KLK6's crucial role in tumor growth.
  • - The research highlights KLK6 as an important factor for intestinal tumorigenesis, suggesting it could be useful for early diagnosis of colorectal cancer.
View Article and Find Full Text PDF

Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression.

Matrix Biol

December 2024

Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland. Electronic address:

The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals.

View Article and Find Full Text PDF

Introduction: Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer.

Areas Covered: This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!