Machine learning method has become a popular, convenient and efficient computing tool applied to many industries at present. Multi-hole pressure probe is an important technique widely used in flow vector measurement. It is a new attempt to integrate machine learning method into multi-hole probe measurement. In this work, six typical supervised learning methods in scikit-learn library are selected for parameter adjustment at first. Based on the optimal parameters, a comprehensive evaluation is conducted from four aspects: prediction accuracy, prediction efficiency, feature sensitivity and robustness on the failure of some hole port. As results, random forests and K-nearest neighbors' algorithms have the better comprehensive prediction performance. Compared with the in-house traditional algorithm, the machine learning algorithms have the great advantages in the computational efficiency and the convenience of writing code. Multi-layer perceptron and support vector machines are the most time-consuming algorithms among the six algorithms. The prediction accuracy of all the algorithms is very sensitive to the features. Using the features based on the physical knowledge can obtain a high accuracy predicted results. Finally, KNN algorithm is successfully applied to field measurements on the angle of attack of a wind turbine blades. These findings provided a new reference for the application of machine learning method in multi-hole probe calibration and measurement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9870118PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277672PLOS

Publication Analysis

Top Keywords

machine learning
16
learning method
12
supervised learning
8
learning methods
8
method multi-hole
8
multi-hole probe
8
prediction accuracy
8
learning
6
algorithms
5
evaluations supervised
4

Similar Publications

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Background: Bullying, encompassing physical, psychological, social, or educational harm, affects approximately 1 in 20 United States teens aged 12-18. The prevalence and impact of bullying, including online bullying, necessitate a deeper understanding of risk and protective factors to enhance prevention efforts. This study investigated the key risk and protective factors most highly associated with adolescent bullying victimization.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Athlete engagement is influenced by several factors, including cohesion, passion and mental toughness. Machine learning methods are frequently employed to construct predictive models as a result of their high efficiency. In order to comprehend the effects of cohesion, passion and mental toughness on athlete engagement, this study utilizes the relevant methods of machine learning to construct a prediction model, so as to find the intrinsic connection between them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!