Nonlinear nano-optical measurements that combine ultrafast spectroscopy with tools of scanning probe microscopy are scarce. This is particularly the case when high spatial resolution on the order of a few nanometers is sought after in experiments performed under ambient laboratory conditions. In this work, we demonstrate the latter through measurements that track two-photon photoluminescence from aggregates of CdSe/ZnS quantum dots with sub-5 nm spatial resolution. Our proof-of-principle measurements that only take advantage of a plasmonic probe (as opposed to a gap mode) pave the way for nonlinear photoluminescence-based spectral nanoimaging of realistic/heterogeneous (bio) molecular and (bio) material systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c07750 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!