Accurate memory regarding the location of an object with respect to one's own body, termed egocentric visuospatial memory, is essential for action directed toward the object. Although researchers have suggested that the brain stores information related to egocentric visuospatial memory not only in the eye-centered reference frame but also in the other egocentric (i.e., head- or body-centered or both) reference frames, experimental evidence is scarce. Here, we tested this possibility by exploiting the perceptual distortion of head/body-centered coordinates via whole-body tilt relative to gravity. We hypothesized that if the head/body-centered reference frames are involved in storing the egocentric representation of a target in memory, then reproduction would be affected by this perceptual distortion. In two experiments, we asked participants to reproduce the remembered location of a visual target relative to their head/body. Using intervening whole-body roll rotations, we manipulated the initial (target presentation) and final (reproduction of the remembered location) body orientations in space and evaluated the effect on the reproduced location. Our results showed significant biases of the reproduced target location and perceived head/body longitudinal axis in the direction of the intervening body rotation. Importantly, the amount of error was correlated across participants. These results provide experimental evidence for the neural encoding and storage of information related to egocentric visuospatial memory in the head/body-centered reference frames.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9900457 | PMC |
http://dx.doi.org/10.1167/jov.23.1.16 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!