The facile carbon atom abstraction reaction by [(PrP)Ni]H (1) with various terminal alkenes to give [(PrP)Ni]H(μ-C) (2) occurs a common highly reactive intermediate [(PrP)Ni]H (3), which was isolated by the reaction of 1 with norbornene. Temperature dependent H and P{H} NMR chemical shifts of 3 are consistent with a thermally populated triplet excited state only 2 kcal mol higher energy than the diamagnetic ground state. Complex 3 catalyzes the dimerization of norbornene to stereoselectively provide exclusively () anti-(bis-2,2'-norbornylidene).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cc06681e | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
As an efficient, sustainable, and environmentally friendly semiconductor material, covalent organic frameworks (COFs) can generate hydrogen peroxide (HO) by photocatalysis, attracting wide attention in recent years. Herein, the effects of hydroxyl, methoxyl, and vinyl groups of imide-linked two-dimensional (2D) COFs on the photocatalytic production of HO were studied theoretically and experimentally. The introduction of vinyl groups greatly promotes the photogenerated charge separation and migration of COFs, providing more oxygen adsorption sites, stronger proton affinity, and lower intermediate binding energy, which effectively facilitates the rapid conversion of oxygen to HO.
View Article and Find Full Text PDFBeilstein J Nanotechnol
January 2025
Alexander Butlerov Institute of Chemistry, Kazan Federal University, Lobachevsky str. 1/29, Kazan 420008, Russia.
Disruption of cholinesterases and, as a consequence, increased levels of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of antidote delivery systems that will release the drug only when acetylcholine levels are elevated.
View Article and Find Full Text PDFJ Mol Model
January 2025
Sorbonne Université, CNRS, "De la Molécule aux Nano-Objets : Réactivité, Interactions et Spectroscopies", MONARIS, UMR 8233, 4 Place Jussieu, Paris, 75005, France.
Context: A chemical reaction can be described, from a physicochemical perspective, as a redistribution of electron density. Additionally, non-covalent interactions locally modify the electron density distribution. This study aims to characterize the modification of reactivity caused by the presence of non-covalent interactions such as hydrogen bonds, in a reaction involving the formation of two bonds and the breaking of two others: CH₃COOH + NH₂CH₃ → CH₃CONHCH₃.
View Article and Find Full Text PDFNano Lett
January 2025
Donostia International Physics Center (DIPC), E-20018 Donostia-San Sebastián, Spain.
Nanoporous graphene (NPG), laterally bonded carbon nanoribbons, is a promising platform for controlling coherent electron propagation in the nanoscale. However, for its successful device integration NPG should ideally be on a substrate that preserves or enhances its anisotropic transport properties. Here, using an atomistic tight-binding model combined with nonequilibrium Green's functions, we study NPG on graphene and show that their electronic coupling is modulated as a function of the interlayer twist angle.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Jakkur P.O. 560064, India.
Seeking new and efficient thermoelectric materials requires a detailed comprehension of chemical bonding and structure in solids at microscopic levels, which dictates their intriguing physical and chemical properties. Herein, we investigate the influence of local structural distortion on the thermoelectric properties of TlCuS, a layered metal sulfide featuring edge-shared Cu-S tetrahedra within CuS layers. While powder X-ray diffraction suggests average crystallographic symmetry with no distortion in CuS tetrahedra, the synchrotron X-ray pair distribution function experiment exposes concealed local symmetry breaking, with dynamic off-centering distortions of the CuS tetrahedra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!