In spinal cord injuries, axonal regeneration decreases with the activation of astrocytes followed by glial scar formation. Targeting reactive astrocytes has been recently performed by unsafe viral vectors to inhibit gliosis. In the current study, biocompatible polymeric nanoparticles were selected as an alternative for viruses to target reactive astrocytes for further drug/gene delivery applications. Lipopolysaccharide-bonded chitosan-quantum dots/poly acrylic acid nanoparticles were prepared by ionic gelation method to target reactive astrocytes both in vitro and in spinal cord-injured rats. Owing to their biocompatibility and pH-responsive behavior, chitosan and poly acrylic acid were the main components of nanoparticles. Nanoparticles were then chemically labeled with quantum dots to track the cell uptake and electrostatically interacted with lipopolysaccharide as a targeting ligand. In vitro and in vivo studies were performed in triplicate and all data were expressed as the mean ± the standard error of the mean. Smart nanoparticles with optimum size (61.9 nm) and surface charge (+ 12.5 mV) successfully targeted primary reactive astrocytes extracted from the rat cerebral cortex. In vitro studies represented high cell viability (96%) in the exposure of biocompatible nanoparticles. The pH-responsive behavior of nanoparticles was proved by their internalization into the cell's nuclei due to the swelling and endosomal escape of nanoparticles in acidic pH. In vivo studies demonstrated higher transfection of nanoparticles into reactive astrocytes compared to the neurons. pH-responsive ligand-bonded chitosan-based nanoparticles are good alternatives for viral vectors in targeted delivery applications for the treatment of spinal cord injuries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13346-023-01300-3 | DOI Listing |
Transl Psychiatry
January 2025
Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, People's Republic of China. Electronic address:
After spinal cord injury (SCI), reactive astrocytes in the injured area are triggered after spinal cord injury (SCI) and to polarize into A1 astrocytes with a proinflammatory phenotype or A2 astrocytes with an anti-inflammatory phenotype. Monopolar spindle binder 2 (MOB2) induces astrocyte stellation, maintains cell homeostasis, and promotes neurite outgrowth; however, its role in the phenotypic transformation of reactive astrocytes remains unclear. Here, we confirmed for the first time that MOB2 is associated with A1/A2 phenotypic switching in reactive astrocytes following SCI in mice.
View Article and Find Full Text PDFExp Lung Res
January 2025
Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!