Herein, we report a new air-stable phosphine-free 8-AQ (8-aminoquinoline) based Mn(I) carbonyl complex as the catalyst for the C(α)-alkylation of oxindoles with alcohols. The Mn complex [(8-AQ)Mn(CO) Br] works effectively as a catalyst for the α-alkylation of oxindoles by both secondary as well as primary alcohols. The procedure has been used for the synthesis of pharmaceutically important recently developed oxindoles such as 3-(4-methoxybenzyl)indolin-2-one, 3-(4-(dimethylamino)benzyl)indolin-2-one, 3-(4-(dimethylamino)phenyl)-5-fluoroindolin-2-one and 3-(benzo[d][1,3]dioxol-5-ylmethyl)indolin-2-one, which are found to be effective in preventing specific types of cell death in neurodegenerative disorders. Control experiments have been carried out to investigate the reaction mechanism and the crucial role of metal-ligand cooperation via -NH moiety during catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202201148DOI Listing

Publication Analysis

Top Keywords

cα-alkylation oxindoles
8
oxindoles secondary
8
primary alcohols
8
bench-stable 8-aminoquinoline
4
8-aminoquinoline derived
4
derived phosphine-free
4
phosphine-free manganese
4
manganese i-catalyst
4
i-catalyst environmentally
4
environmentally benign
4

Similar Publications

The insertion of carbene into secondary amide N-H bonds remains underexplored in organic synthesis. In this work, we discovered the visible-light-induced insertion of siloxycarbene into amide N-H bonds. This metal-free, facile reaction proceeds with atom economy under mild conditions with a broad range of secondary N-H amides, including benzanilide, acetanilide, oxindole, isatin, quinolinone, and maleimide, affording stable - and -acetals in excellent isolated yields.

View Article and Find Full Text PDF

This work describes the development of the first enantioselective addition reaction between 1,3,5,7-tetramethyl-BODIPYs and isatin derivatives. The reaction utilizes bifunctional quinine/squaramide organocatalysts and affords nine novel chiral BODIPY dyes under mild conditions, with enantioselectivities reaching up to 60%. The synthesized BODIPY-oxindoles exhibit high fluorescence emissions, consistent with their parent BODIPYs, and display tunable colors.

View Article and Find Full Text PDF

Synthesis and functional screening of novel inhibitors targeting the HDAC6 zinc finger ubiquitin-binding domain.

Eur J Med Chem

December 2024

SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium. Electronic address:

Histone deacetylase 6 (HDAC6) is a promising target for treating neurodegenerative disorders, several cancer types and viral infections. Unique among HDACs, the HDAC6 isoform possesses a zinc finger ubiquitin-binding domain (UBD) crucial for managing misfolded protein aggregates and facilitating viral infection. HDAC6 binds aggregated polyubiquitinated proteins through its UBD, mediating their transport to the aggresome and subsequent removal via autophagy.

View Article and Find Full Text PDF

The structural groups of 2-oxindole and tricyclic 3a-hydroxy-hexahydropyrrolo-[2,3-]indole (HO-HPI) are important pharmacophores. Chemical synthesis of complex alkaloids containing a 2-oxindole or HO-HPI moiety, especially the latter one, has been a long-standing challenge. Herein, we characterized the P450 enzyme AfnD, and its homologue proteins, HmtT, ClpD, KtzM, and LtzR, as cyclopeptide 2-oxindole and HO-HPI monooxygenases (cpOPMOs) that could introduce a 2-oxindole or HO-HPI moiety into the tryptophan-containing cyclopeptides in a pH-dependent manner.

View Article and Find Full Text PDF

Palladium-catalyzed allylic C-H alkylation of terminal olefins with 3-carboxamide oxindoles.

Org Biomol Chem

January 2025

Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.

A novel palladium-catalyzed allylic C-H alkylation of terminal olefins with 3-carboxamide oxindoles is described. A variety of new 3-carboxamide-3-allylation oxindoles with an all-carbon quaternary center were obtained in moderate to good yields (up to 99%). In addition, the asymmetric version of this reaction was also explored, providing moderate enantioselectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!