In this paper, we show that both continuous phase transitions of liquid water, the liquid-gas and the liquid-liquid, can be articulated within a single thermodynamic analytical formalism. This result follows from a combination of the two-liquid model (TLM), recently confirmed for water, with the idea of a thermal-dependent excluded volume, , concept introduced by van der Waals, in his famous state equation. Starting from the fundamentals of thermodynamics, it will be shown that the TLM naturally leads to the idea of an extensive thermal-dependent that acts as a parameter of the sample thermodynamic potentials. This procedure effectively separates the thermodynamics of the system into two parts: the first concerns the clusters' thermodynamics, taken as wandering particles, and the second concerns the thermal behavior of its internal structure (geometry and number of particles). From this result, we demonstrate that the condition of mechanical instability leads to not one but two critical points, each happening in one of the above-described parts of the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.2c07213 | DOI Listing |
Phytochem Anal
January 2025
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
Objective: This study aimed to qualitatively study the main chemical components of apple peel in APORT, Kazakhstan, by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and to compare the components of apple peels with different provenances.
Methods: An ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.
Nat Commun
January 2025
Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.
The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC).
View Article and Find Full Text PDFEnviron Pollut
January 2025
Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
Migration characteristics and occurrence forms of redox-sensitive metal(loid)s such as arsenic (As), chromium (Cr), and vanadium (V) remained unclear in dynamic estuarine waters. In this work, size fractionation and chemical speciation of As, Cr, and V in the Jiaomen Waterway (JMW), a tidal river of the Pearl River estuary, were explored based on (ultra)filtration, the diffusive gradients in thin films (DGT) techniques and a thermodynamic chemical equilibrium model. The results showed that As was present mainly in soluble forms in the river water, and the suspended particulate matter (SPM) was identified the major carrier for Cr.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Nanoscale Biophotonics Laboratory, University of Galway, University Road, Galway H91 TK33 Ireland. Electronic address:
Poly-N-isopropylacrylamide (PNIPAm), a thermorresponsive polymer, highly soluble in water below its lower critical solution temperature (LCST), is widely used in biomedical applications like drug delivery. Being able to measure PNIPAm size and aggregation state in solution quickly, inexpensively, and accurately below the LCST is critical when stoichiometric particle or molecular ratios are required. Dynamic light scattering (DLS) is probably the most widely available, and inexpensive nanoparticle sizing technique, but there are limitations with respect to sample polydispersity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!