Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phenomena such as anticooperativity and competition among non-covalent bond donors and acceptors are key considerations when exploring the polymorphic and stoichiomorphic landscapes of binary and higher-order cocrystalline architectures. We describe the preparation of four cocrystals of 1,3,5-trifluoro-2,4,6-triiodobenzene with N-heterocyclic compounds, namely acridine, 3-aminopyridine, 4-methylaminopyridine, and 1,2-di(4-pyridyl)ethane. The cocrystals, which are characterized by single-crystal and powder X-ray diffraction experiments, all show moderately strong and directional iodine⋅⋅⋅nitrogen halogen bonds with reduced distance parameters ranging from 0.79 to 0.92 and carbon-iodine⋅⋅⋅nitrogen bond angles ranging from 165.4(3) to 175.31(7)°. The cocrystal comprising 1,3,5-trifluoro-2,4,6-triiodobenzene and acridine provides a relatively rare example where all three halogen bond donor sites form halogen bonds with three acceptor molecules, overcoming an anticooperative effect. This effect manifests itself through the lengthening of non-halogen-bonded C-I bonds, weakening their potential to form halogen bonds. The effect is only observed once two halogen bonds have been formed to 1,3,5-trifluoro-2,4,6-triiodobenzene; one such bond does not appear to be adequate. Among the four cocrystals studied, competition between the pyridyl nitrogen atoms and the amine nitrogen atoms suggests that the former are the preferred halogen bond acceptors. Analysis by Hirshfeld fingerprint plots and C and F magic-angle spinning solid-state nuclear magnetic resonance (NMR) spectroscopy provides additional insights into the prevalence of various short contacts in the crystal structures and into the spectral response to halogen-bond-induced cocrystallization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202201221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!