Biological channels in the cell membrane play a critical role in the regulation of signal transduction and transmembrane transport. Researchers have been committed to building biomimetic nanochannels to imitate the above significant biological processes. Unlike the fragile feature of biological channels, numerous solid nanochannels have aroused extensive interests for their controllable chemical properties on the surface and superior mechanical properties. Surface functionalization has been confirmed to be vital to determine the properties of solid nanochannels. Macrocyclic hosts (, the crown ethers, cyclodextrins, calix[]arenes, cucurbit[]urils, pillar[]arenes, and trianglamine) can be tailored to the interior surface of the nanochannels with the performance of stimuli response and separation. Macrocycles have good reversibility and high selectivity toward specific ions or molecules, promoting functionalies of solid nanochannels. Hence, the combination of macrocyclic hosts and solid nanochannels is conducive to taking both advantages and achieving applications in functional nanochannels (, membranes separations, biosensors, and smart devices). In this review, the most recent advances in nanochannel membranes decorated by macrocyclic host-guest chemistry are briefed. A variety of macrocyclic hosts-based responsive nanochannels are organized (, the physical stimuli and specific molecules or ions stimuli) and nanochannels are separated (, water purifications, enantimerseparations, and organic solvent nanofiltration), respectively. Hopefully, this review can enlighten on how to effectively build functional nanochannels and facilitate their practical applications in membrane separations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cc06562b | DOI Listing |
Small
March 2025
Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
Using small molecules to integrate multifunctional surfaces within a nanopore is an effective way to endow smart responsibilities of nanofluidic diodes. However, the complex synthesis of the small molecules hinders their further application in achieving multifunctional surfaces. Here, a simple and versatile design concept is reported for fabricating bioinspired integrated nanofluidic diodes with adjustable surface chemistry by confining a spirocyclic fluorescein derivative, 6-aminofluorescein (6-AF), within an asymmetric track-etched nanopore.
View Article and Find Full Text PDFAcc Chem Res
March 2025
State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
ConspectusAccurately simulating or sensitively monitoring specific substances, such as ions, molecules, and proteins in the life process, is essential for gaining a fundamental comprehension of the underlying biological mechanism, which has been a trending topic for many years. Solid-state nanochannels, inspired by biological ion channels, have been developed for decades and have achieved significant success, representing the forefront of the interdisciplinary fields of bioanalytical chemistry and nanotechnology. Typically, solid-state nanochannels with a pore size of less than 100 nm are selected to construct nanochannel-based biosensors, which can be an excellent platform to analyze small analytes, such as ions and small molecules, in a restricted space and simulate the intricate process of ion transport in living organisms.
View Article and Find Full Text PDFNano Lett
March 2025
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
Efficient and selective Li transport within the nanochannel is essential for high-performance solid-state electrolytes (SSEs) in lithium metal batteries. Introducing Li hopping sites into SSEs shows great potential for promoting Li transport; however, it typically reduces the Li transport nanochannel size, consequently increasing the energy barrier for Li transport. Herein, we present a molecular defect strategy for MOFs to introduce Li hopping sites and increase the nanochannel size simultaneously as quasi-solid-state electrolytes (QSSEs).
View Article and Find Full Text PDFACS Nano
March 2025
State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
Solid-state nanopore and nanochannel biosensors have revolutionized protein detection by offering label-free, highly sensitive analyses. Traditional sensing systems (1st and 2nd stages) primarily focus on inner wall (IW) interactions, facing challenges such as complex preparation processes, variable protein entry angles, and conformational changes, leading to irregular detection events. To address these limitations, recent advancements (3rd stage) have shifted toward outer surface (OS) functionalization but are constrained by single-protein recognition models.
View Article and Find Full Text PDFSmall
February 2025
State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
Solid-state nanopore/nanochannel biosensors have rapidly advanced due to their high sensitivity, label-free detection, and fast response. However, detecting biomarkers directly in complex biological environments, particularly whole blood, remains challenging because of nonspecific protein adsorption and nanopore/nanochannel clogging. Here, a DNA aptamer functionalized nanochannel biosensor is developed with excellent antifouling properties, achieved by coating the nanochannel surface with agarose gel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!