Phagocytic activity is an extremely important indicator that evaluates medicinal effects related to the immune system and functions to investigate the mechanism of how a drug works under conditions such as immunological regulation, immune tolerance, inflammation, cancer, Current techniques based on flow cytometry, fluorescence imaging or numbering CFUs after cell lysis for detecting phagocytosis suffer from long terms of bacteria culturing and complex preparation steps for fluorescent labeling or require a large amount of cell samples to be tested. This study aims at developing a simple and fast method for testing the phagocytic activity of unlabeled and native cells, taking advantage of very high-resolution direct current insulator-based dielectrophoresis (DC-iDEP). The properties of cells are characterized by native whole cell biophysical properties. This strategy not only eliminates the time-consuming bacterial culture work after cell lysis, but also lowers the expenses of bacteria labeling. The introduction of microfluidics reduces the sample volume or reagent needed. The analysis of the biophysical property distributions of native cells and medicine treated cells may lead to a less expensive and rapid tool for evaluating medicinal effects. Furthermore, berberine was investigated for decreasing the phagocytic activity of macrophages and used for comparison of activities. This study works on establishing a label-free, unbiased, and non-destructive method to determine cell phagocytic activity and investigate its use in evaluating medicinal effects on phagocytosis in a single step within a short time.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2lc01021fDOI Listing

Publication Analysis

Top Keywords

phagocytic activity
20
medicinal effects
12
cell phagocytic
8
cell lysis
8
native cells
8
evaluating medicinal
8
cell
6
phagocytic
5
activity
5
label-free microfluidic
4

Similar Publications

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.

View Article and Find Full Text PDF

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Chinese yam polysaccharide induces the differentiation and natural antibody secretion of IgM B cells to prevent Aeromonas hydrophila infection in grass carp.

Int J Biol Macromol

January 2025

National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. Electronic address:

Chinese yam polysaccharide (CYP) is an effective immunostimulant, however, its efficacy in grass carp, an important commercial fish species in Asia, remains untested. Here, our study evaluated the immunostimulatory effects of CYP on IgM B cells in vitro and on humoral immunity and immune defense against Aeromonas hydrophila infection in vivo. In vitro stimulation experiments showed that CYP could induce the secretion of IgM antibodies, because it could stimulate the proliferation and differentiation of head kidney IgM B cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!