A three-dimensional Mn-based MOF as a high-performance supercapacitor electrode.

Dalton Trans

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.

Published: February 2023

Developing new high-performance electrode materials for improving the energy density of supercapacitors is an important task. Herein, a new three-dimensional (3D) metal-orgainc framework (MOF) [Mn(BGPD)(HO)] (Mn-BGPD; BGPD = ,'-bis(glycinyl)pyromellitic diimide) was synthesized. When Mn-BGPD is used as the electrode material of supercapacitors, in a three-electrode setup, it shows an outstanding specific capacitance of 832.6 F g at a current density of 1 A g. The asymmetrical supercapacitor of Mn-BGPD shows an attractive specific capacitance of 100 F g at 1 A g, which corresponds to an excellent energy density of 35.5 W h kg. Moreover, better cycling stability with a capacitance retention of 46.7% is also shown. The high electrochemical performance makes Mn-BGPD a very promising electrode material for supercapacitors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt02857cDOI Listing

Publication Analysis

Top Keywords

energy density
8
electrode material
8
material supercapacitors
8
specific capacitance
8
three-dimensional mn-based
4
mn-based mof
4
mof high-performance
4
high-performance supercapacitor
4
electrode
4
supercapacitor electrode
4

Similar Publications

LiCoO2 batteries for 3C electronics demand high charging voltage and wide operating temperature range, which are virtually impossible for existing electrolytes due to aggravated interfacial parasitic reactions and sluggish kinetics. Herein, we report an electrolyte design strategy based on a partially fluorinated ester solvent (i.e.

View Article and Find Full Text PDF

Vertical Quantum Confinement in Bulk MoS.

ACS Nano

January 2025

Dto. de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain.

We experimentally observe quantum confinement states in bulk MoS by using angle-resolved photoemission spectroscopy (ARPES). The band structure at the Γ̅ point reveals quantum well states (QWSs) linked to vertical quantum confinement of the electrons, confirmed by the absence of dispersion in and a strong intensity modulation with the photon energy. Notably, the binding energy dependence of the QWSs versus does not follow the quadratic dependence of a two-dimensional electron gas.

View Article and Find Full Text PDF

This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.

View Article and Find Full Text PDF

The intentional manipulation of carrier characteristics serves as a fundamental principle underlying various energy-related and optoelectronic semiconductor technologies. However, achieving switchable and reversible control of the polarity within a single material to design optimized devices remains a significant challenge. Herein, we successfully achieved dramatic reversible p-n switching during the semiconductor‒semiconductor phase transition in BiI via pressure, accompanied by a substantial improvement in their photoelectric properties.

View Article and Find Full Text PDF

Microbial activity in the deep continental subsurface is difficult to measure due to low cell densities, low energy fluxes, cryptic elemental cycles and enigmatic metabolisms. Nonetheless, direct access to rare sample sites and sensitive laboratory measurements can be used to better understand the variables that govern microbial life underground. In this study, we sampled fluids from six boreholes at depths ranging from 244 m to 1,478 m below ground at the Sanford Underground Research Facility (SURF), a former goldmine in South Dakota, United States.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!