The central nervous system (CNS) is a reservoir of immune privilege. Specialized immune glial cells are responsible for maintenance and defense against foreign invaders. The blood-brain barrier (BBB) prevents detrimental pathogens and potentially overreactive immune cells from entering the periphery. When the double-edged neuroinflammatory response is overloaded, it no longer has the protective function of promoting neuroregeneration. Notably, microbiota and its derivatives may emerge as pathogen-associated molecular patterns of brain pathology, causing microbiome-gut-brain axis dysregulation from the bottom-up. When dysbiosis of the gastrointestinal flora leads to subsequent alterations in BBB permeability, peripheral immune cells are recruited to the brain. This results in amplification of neuroinflammatory circuits in the brain, which eventually leads to specific neurological disorders. Aggressive treatment strategies for gastrointestinal disorders may protect against specific immune responses to gastrointestinal disorders, which can lead to potential protective effects in the CNS. Accordingly, this study investigated the mutual effects of microbiota and the gut-brain axis, which may provide targeting strategies for future disease treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846976 | PMC |
http://dx.doi.org/10.12998/wjcc.v11.i1.1 | DOI Listing |
J Med Internet Res
January 2025
Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.
Background: Despite the increasing popularity of electronic devices, the longitudinal effects of daily prolonged electronic device usage on brain health and the aging process remain unclear.
Objective: The aim of this study was to investigate the impact of the daily use of mobile phones/computers on the brain structure and the risk of neurodegenerative diseases.
Methods: We used data from the UK Biobank, a longitudinal population-based cohort study, to analyze the impact of mobile phone use duration, weekly usage time, and playing computer games on the future brain structure and the future risk of various neurodegenerative diseases, including all-cause dementia (ACD), Alzheimer disease (AD), vascular dementia (VD), all-cause parkinsonism (ACP), and Parkinson disease (PD).
J Neurochem
January 2025
Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada.
Highly abundant in neurons, the cellular prion protein (PrP) is an obligatory precursor to the disease-associated misfolded isoform denoted PrP that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrP to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrP are referred to as α- and β-cleavages, and in this review we outline the sites within PrP at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Psychiatry, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
Background: Despite transcranial direct current stimulation (tDCS) has demonstrated encouraging potential for modulating the circadian rhythm, little is known about how well and sustainably tDCS might improve the subjective sleep quality in older adults. This study sought to determine how tDCS affected sleep quality and cognition, as well as how well pre-treatment sleep quality predicted tDCS effects on domain-specific cognitive functions in patients with mild neurocognitive disorder due to Alzheimer's disease (NCD-AD).
Methods: This clinical trial aimed to compare the effectiveness of tDCS and cognitive training in mild NCD-AD patients (n = 201).
PLoS One
January 2025
Clinical Research Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America.
Background: Patients receiving chiropractic spinal manipulation (CSM) for spinal pain are less likely to be prescribed opioids, and some evidence suggests that these patients have a lower risk of any type of adverse drug event. We hypothesize that adults receiving CSM for sciatica will have a reduced risk of opioid-related adverse drug events (ORADEs) over a one-year follow-up compared to matched controls not receiving CSM.
Methods: We searched a United States (US) claims-based data resource (Diamond Network, TriNetX, Inc.
PLoS One
January 2025
Department of Care Ethics, University of Humanistic Studies, Utrecht, The Netherlands.
Background: People with the chronic disease Multiple Sclerosis are subjected to different degrees of profound uncertainty. Uncertainty has been linked to adverse psychological effects such as feelings of heightened vulnerability, avoidance of decision-making, fear, worry, anxiety disorders, and even depression. Research into Multiple Sclerosis has a predominant focus on the scientific, practical, and psychosocial issues of uncertainty.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!