Inflammatory bowel diseases (IBDs) comprising ulcerative colitis, Crohn's disease and microscopic colitis are characterized by chronic inflammation of the gastrointestinal tract. IBD has spread around the world and is becoming more prevalent at an alarming rate in developing countries whose societies have become more westernized. Cell therapy, intestinal microecology, apheresis therapy, exosome therapy and small molecules are emerging therapeutic options for IBD. Currently, it is thought that low-molecular-mass substances with good oral bio-availability and the ability to permeate the cell membrane to regulate the action of elements of the inflammatory signaling pathway are effective therapeutic options for the treatment of IBD. Several small molecule inhibitors are being developed as a promising alternative for IBD therapy. The use of highly efficient and time-saving techniques, such as computational methods, is still a viable option for the development of these small molecule drugs. The computer-aided () discovery approach is one drug development technique that has mostly proven efficacy. Computational approaches when combined with traditional drug development methodology dramatically boost the likelihood of drug discovery in a sustainable and cost-effective manner. This review focuses on the modern drug discovery approaches for the design of novel IBD drugs with an emphasis on the role of computational methods. Some computational approaches to IBD genomic studies, target identification, and virtual screening for the discovery of new drugs and in the repurposing of existing drugs are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846937 | PMC |
http://dx.doi.org/10.3748/wjg.v29.i2.310 | DOI Listing |
Oncol Rep
March 2025
Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.
Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.
View Article and Find Full Text PDFCurr Med Chem
January 2025
School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
Branched-chain amino acids (BCAAs) are essential amino acids for humans and play an indispensable role in many physiological and pathological processes. Branched-chain amino acid aminotransferase (BCAT) is a key enzyme that catalyzes the metabolism of BCAAs. BCAT is upregulated in many cancers and implicated in the development and progress of some other diseases, such as metabolic and neurological diseases; and therefore, targeting BCAT might be a potential therapeutic approach for these diseases.
View Article and Find Full Text PDF3 Biotech
February 2025
Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai, Tamil Nadu 600034 India.
Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.
View Article and Find Full Text PDFRSC Med Chem
January 2025
Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Jammu-180001 India
Unveiling novel pathways for drug discovery forms the foundation of a new era in the combat against tuberculosis. The discovery of a novel drug, bedaquiline, targeting mycobacterial ATP synthase highlighted the targetability of the energy metabolism pathway. The significant potency of bedaquiline against heterogeneous population of marks ATP synthase as an important complex of the electron transport chain.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
Introduction: Macromolecular X-ray crystallography (XRC), nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryoEM) are the primary techniques for determining atomic-level, three-dimensional structures of macromolecules essential for drug discovery. With advancements in artificial intelligence (AI) and cryoEM, the Protein Data Bank (PDB) is solidifying its role as a key resource for 3D macromolecular structures. These developments underscore the growing need for enhanced quality metrics and robust validation standards for experimental structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!