The pyranopyrimidine core is a key precursor for medicinal and pharmaceutical industries due to its broader synthetic applications as well as its bioavailability. Among its four possible isomers, we found that 5-pyrano[2,3-]pyrimidine scaffolds have a wide range of applicability, and in recent years, they have been intensively investigated, but the development of the main core is found to be more challenging due to its structural existence. In this review article, we cover all of the synthetic pathways that are employed for the development of substituted 4-aryl-octahydropyrano/hexahydrofuro[2,3-]pyrimidin-2-one (thiones) and 5-aryl-substituted pyrano[2,3-]pyrimidindione (2-thiones) derivatives through a one-pot multicomponent reaction using diversified hybrid catalysts such as organocatalysts, metal catalysts, ionic liquid catalysts, nanocatalysts, green solvents, catalyst-/solvent-free conditions, and miscellaneous catalysts as well as the mechanism and recyclability of the catalysts. This review mainly focuses on the application of hybrid catalysts (from 1992 to 2022) for the synthesis of 5-pyrano[2,3-]pyrimidine scaffolds. This review will definitely attract the world's leading researchers to utilize broader catalytic applications for the development of lead molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850783 | PMC |
http://dx.doi.org/10.1021/acsomega.2c05349 | DOI Listing |
Nanoscale
January 2025
School of Chemistry & Chemical Engineering, School of Materials Science and Engineering and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Department of Chemistry and Center for Atomic Engineering of Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of the Ministry of Education, Anhui University, Hefei, 230601, China.
Atomically precise nanoclusters (NCs) can serve as an excellent platform for a comprehensive understanding of structure-property relationships. Herein, three structurally similar Cu NCs (Cu-1, Cu-2 and Cu-3) have been prepared for the photocatalytic phenylacetylene self-coupling reaction. It was found that Cu-1 NC achieved the highest turnover number (TON) of 524.
View Article and Find Full Text PDFNanoscale
January 2025
Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions.
View Article and Find Full Text PDFDalton Trans
January 2025
Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
In the face of escalating environmental challenges such as fossil fuel dependence and water pollution, innovative solutions are essential for sustainable development. In this regard, zeolitic imidazolate frameworks (ZIFs), specifically ZIF-8, act as promising photocatalysts for environmental remediation and renewable energy applications. ZIF-8, a subclass of metal-organic frameworks (MOFs), is renowned for its large specific surface area, high porosity, rapid electron transfer ability, abundant functionalities, ease of designing, controllable properties, and remarkable chemical and thermal stability.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea.
In this research, S-scheme heterojunction photocatalysts are prepared through the hybridization of nitrogen-rich g-CN with TiO (coded as TCN-(): as the weight ratio of TiO:g-CN). The photocatalytic potential of TCN-() is evaluated against benzene (1-5 ppm) across varying humidity levels using a dynamic flow packed-bed photocatalytic reactor. Among the prepared composites, TCN-(10) exhibits the highest synergy between g-CN and TiO at "" ratio of 10%, showing superior best benzene degradation performance (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!