In this study, vitamin A palmitate (VAP)-loaded poly(lactic--glycolic acid) (PLGA)/chitosan-coated PLGA nanoparticle (NP) systems were prepared by the nanoprecipitation technique. The prepared systems were characterized by parameters such as particle size, polydispersity index (PDI), ζ-potential, encapsulation efficiency, dissolution, and release kinetic study. Then, the cytotoxicity and wound healing profiles of the designed NP formulations in HaCaT (human keratinocyte skin cell lines) were determined. The particle size of VAP-loaded NPs was obtained between 196.33 ± 0.65 and 669.23 ± 5.49 nm. PDI data proved that all NPs were prepared as high quality and monodisperse. While negative ζ-potential values of Blank-NP-1 and NP-1 encoded PLGA NP formulations were obtained, positive ζ-potential was obtained in chitosan-coated NPs. release studies of NPs observed rapid dissolution in the first 1-6 h, but prolonged dissolution of VAP after rapid dissolution. As a result of cell culture studies and wound healing activity studies, it was determined that NP-7 was the most effective. It was thought that the reason for this was that the NP-7 coded formulation was a chitosan-coated PLGA nanoparticle with the smallest particle size, and it was concluded that the efficiency of VAP was increased with its nanoparticle structure. This study demonstrated the similar wound healing effects of VAP-loaded nanoparticle systems, in particular NP-7, which increases keratinocyte cell proliferation at lower concentrations (10 μg·mL) than vitamin A alone (100 μg·mL). VAP-loaded nanocarriers that can be used in the pharmaceutical industry have been successfully produced and the results obtained have been evaluated as promising for this industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851036PMC
http://dx.doi.org/10.1021/acsomega.2c07232DOI Listing

Publication Analysis

Top Keywords

wound healing
16
particle size
12
cell proliferation
8
healing effects
8
plga/chitosan-coated plga
8
plga nanoparticle
8
nanoparticle systems
8
rapid dissolution
8
evaluation cell
4
wound
4

Similar Publications

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

Objective: Soft tissue defects and postoperative wound healing complications related to calcaneus fractures may result in significant morbidity. The aim of this study was to investigate whether percutaneous minimally invasive screw internal fixation (PMISIF) can change this situation in the treatment of calcaneal fractures, and aimed to explore the mechanical effects of different internal fixation methods on Sanders type III calcaneal fractures through finite element analysis.

Methods: This retrospective analysis focused on 83 patients with Sanders II and III calcaneal fractures from March 2017 to March 2022.

View Article and Find Full Text PDF

Background/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!