Pursuit of the Ultimate Regression Model for Samarium(III), Europium(III), and LiCl Using Laser-Induced Fluorescence, Design of Experiments, and a Genetic Algorithm for Feature Selection.

ACS Omega

Radioisotope Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, Tennessee37830, United States.

Published: January 2023

Laser-induced fluorescence spectroscopy, Raman scattering, and partial least squares regression models were optimized for the quantification of samarium (0-150 μg mL), europium (0-75 μg mL), and lithium chloride (0.1-12 M) with a transformational preprocessing strategy. Selecting combinations of preprocessing methods to optimize the prediction performance of regression models is frequently a major bottleneck for chemometric analysis. Here, we propose an optimization tool using an innovative combination of optimal experimental designs for selecting preprocessing transformation and a genetic algorithm (GA) for feature selection. A D-optimal design containing 26 samples (i.e., combinations of preprocessing strategies) and a user-defined design (576 samples) did not statistically lower the root mean square error of the prediction (RMSEP). The greatest improvement in prediction performance was achieved when a GA was used for feature selection. This feature selection greatly lowered RMSEP statistics by an average of 53%, resulting in the top models with percent RMSEP values of 0.91, 3.5, and 2.1% for Sm(III), Eu(III), and LiCl, respectively. These results indicate that preprocessing corrections (e.g., scatter, scaling, noise, and baseline) alone cannot realize the optimal regression model; feature selection is a more crucial aspect to consider. This unique approach provides a powerful tool for approaching the true optimum prediction performance and can be applied to numerous fields of spectroscopy and chemometrics to rapidly construct models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850777PMC
http://dx.doi.org/10.1021/acsomega.2c06610DOI Listing

Publication Analysis

Top Keywords

feature selection
20
prediction performance
12
regression model
8
laser-induced fluorescence
8
genetic algorithm
8
algorithm feature
8
regression models
8
combinations preprocessing
8
feature
5
selection
5

Similar Publications

Background: Sepsis is a severe complication in leukemia patients, contributing to high mortality rates. Identifying early predictors of sepsis is crucial for timely intervention. This study aimed to develop and validate a predictive model for sepsis risk in leukemia patients using machine learning techniques.

View Article and Find Full Text PDF

Background: Multidrug-resistant Klebsiella pneumoniae (MDR-KP) infections pose a significant global healthcare challenge, particularly due to the high mortality risk associated with septic shock. This study aimed to develop and validate a machine learning-based model to predict the risk of MDR-KP-associated septic shock, enabling early risk stratification and targeted interventions.

Methods: A retrospective analysis was conducted on 1,385 patients with MDR-KP infections admitted between January 2019 and June 2024.

View Article and Find Full Text PDF

A novel machine learning based framework for developing composite digital biomarkers of disease progression.

Front Digit Health

January 2025

Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ, United States.

Background: Current methods of measuring disease progression of neurodegenerative disorders, including Parkinson's disease (PD), largely rely on composite clinical rating scales, which are prone to subjective biases and lack the sensitivity to detect progression signals in a timely manner. Digital health technology (DHT)-derived measures offer potential solutions to provide objective, precise, and sensitive measures that address these limitations. However, the complexity of DHT datasets and the potential to derive numerous digital features that were not previously possible to measure pose challenges, including in selection of the most important digital features and construction of composite digital biomarkers.

View Article and Find Full Text PDF

Hippocampal Functional Radiomic Features for Identification of the Cognitively Impaired Patients from Low-Back-Related Pain: A Prospective Machine Learning Study.

J Pain Res

January 2025

Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.

Purpose: To investigate whether functional radiomic features in bilateral hippocampi can identify the cognitively impaired patients from low-back-related leg pain (LBLP).

Patients And Methods: For this retrospective study, a total of 95 clinically definite LBLP patients (40 cognitively impaired patients and 45 cognitively preserved patients) were included, and all patients underwent functional MRI and clinical assessments. After calculating the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC) and degree centrality (DC) imaging, the radiomic features (n = 819) of bilateral hippocampi were extracted from these images, respectively.

View Article and Find Full Text PDF

Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement significantly impacts psychosocial, emotional, and physical health. A validated objective marker is however lacking to characterize and phenotype bulbar involvement, positing a major barrier to early detection, progress monitoring, and tailored care. This study aimed to bridge this gap by constructing a multiplex functional mandibular muscle network to provide a novel objective measurement tool of bulbar involvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!